NCERT

SOLUTIONS

CLASS - 9th

aglasem.com

Class : 9th
Subject : Maths
Chapter: 10
Chapter Name : CIRCLE

Exercise 10.1

Q1 Fill in the blanks:
(i) The centre of a circle lies in_ of the circle. (exterior/ interior)
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in _of the circle. (exterior/ interior)
(iii) The longest chord of a circle is a _ of the circle.
(iv) An arc is a _ when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and _ of the circle.
(vi) A circle divides the plane, on which it lies, in _ parts.

Answer. (i) The centre of a circle lies in interior of the circle.
(ii) A point, whose distance from the centre Of a circle is greater than its radius lies

In exterior of the circle.
(iii) The longest chord of a circle is a diameter of the circle.
(iv) An arc is a semi-circle when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and chord of the circle.
(vi) A circle divides the plane, on which it lies, in three parts.

Page : 171, Block Name : Exercise 10.1

Q2 Write True or False: Give reasons for your answers.
(i) Line segment joining the centre to any point on the circle is a radius of the circle.
(ii) A circle has only finite number of equal chords.
(iii) If a circle is divided into three equal arcs, each is a major arc.
(iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
(v) Sector is the region between the chord and its corresponding arc.
(vi) A circle is a plane figure

Answer. (i) True. All the points on the circle are at equal distances from the centre of the circle, and this equal distance is called as radius of the circle.
(ii) False. There are infinite points on a circle. Therefore, we can draw infinite
number of chords of given length. Hence, a circle has infinite number of equal chords.
(iii) false. Consider three arcs of same length as AB, BC, and CA . It can be observed that for minor arc BOC, CAB is a major arc. Therefore, $\mathrm{A} 3, \mathrm{BC}$, and CA are minor arcs of the circle.

(iv) True. Let AB be a chord which is twice as long as its radius. It can be observed that in this situation, our chord will be passing through the centre of the circle. Therefore, it will be the diameter of the circle.

(v) False. Sector is the region between an arc and two radii joining the centre to the end points of the arc. For example, in the given figure, $O A B$ is the sector of the circle.

(vi) True. A circle is a two-dimensional figure and it can also be referred to as a plane figure.

Page : 171, Block Name : Exercise 10.1

Exercise 10.2

Q1 Recall that two circles are congruent if they have the same radii. Prove that equal chords of
congruent circles subtend equal angles at their centres.

Answer. A circle is a collection of points which are equidistant from a fixed point. This fixed point is called as the centre of the circle and this equal distance is called as radius of the circle. And thus, the shape of a circle depends on its radius. Therefore, it can be
observed that if we try to superimpose two circles of equal radius, then both circles will cover each other. Therefore, two circles are congruent if they have equal radius. Consider two congruent circles having centre O and O^{\prime} and two chords AB and CD of equal lengths.
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{CO}^{\prime} \mathrm{D}$
$\mathrm{AB}=\mathrm{CD}$ (Chords of same length)
$\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{C}$ (Radii of congruent circles)
0B = O'D (Radii of congruent circles)
$\triangle \mathrm{AOB} \triangle \mathrm{CO}^{\prime} \mathrm{D}$ (SSS congruence rule)
$\angle A O B=\angle C O^{\prime} D$ (By CPCT)
Hence, equal chords of congruent circles subtend equal angles at their centres.

Page : 173 , Block Name : Exercise 10.2

Q2 Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Answer.
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{CO}^{\prime} \mathrm{D}$
$\angle A O B=\angle C O^{\prime} D$ (given)
$\mathrm{OB}=\mathrm{O}^{\prime} \mathrm{D}$ (Chords of same length)
$\mathrm{OA}=\mathrm{O}^{\prime} \mathrm{C}$ (Radii of congruent circles)
$\triangle \mathrm{AOB} \triangle \mathrm{CO}^{\prime} \mathrm{D}$ (SSS congruence rule)
$\mathrm{AB}=\mathrm{CD}$ (By CPCT)

Hence, if the chord of congruent circle equal angles at their centers, then the chords are equals.

Page : 173 , Block Name : Exercise 10.2

Exercise 10.3

Q1 Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Answer. Consider of the following pair of circles.

The above circles do not intersect each other at any point . therefore, they do not have any point in common.

The above circles touch each other only at one point Y . therefore, there is 1 point in common.

The above circles touch each other at 1 point X only. Therefore the circles have one point in common.

These circles intersect each other at two points G and H . Therefore, the circles have two points in common. It can be observed that there can be a maximum of 2 points in common. Consider the situation in which two congruent circles are superimposed on each other. This situation can be referred to as if we are drawing the circle two times.

Page : 176, Block Name : Exercise 10.3

Q2 Suppose you are given a circle. Give a construction to find its centre.

Answer. The below given steps will be followed to find the centre of the given circle.
Step1. Take the given circle.
Step2. Take any two different chords Ad and CD of this circle and draw
perpendicular bisectors of these chords.
Step3. Let these perpendicular bisectors meet at point O. Hence, O is the centre of the given circle.

Page : 176, Block Name : Exercise 10.3

Q3 If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.

Answer. Consider two circles centered at point O and O^{\prime}, intersecting each other at point A and B
respectively.
Join $A B$. $A B$ is the chord of the circle centered at O. Therefore, perpendicular bisector of $A B$ will pass through O.
Again, $A B$ is also the chord of the circle centered at O^{\prime}. Therefore, perpendicular bisector of $A B$ will also pass through O^{\prime}.
Clearly, the centres of these circles lie on the perpendicular bisector of the common chord.

Page : 176 , Block Name : Exercise 10.3

Exercise 10.4

Q1 Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

Answer.

Let the radius of the circle centered at O and O be 5 cm and 3 cm respectively.
$\mathrm{OA}=\mathrm{OB}=5 \mathrm{~cm}$
$\mathrm{O}^{\prime} \mathrm{A}=\mathrm{O}^{\prime} \mathrm{B}=3 \mathrm{~cm}$

00 ' will be the perpendicular bisector of chord $A B$.
$\mathrm{AC}=\mathrm{CB}$
It is given that, $00^{\prime}=4 \mathrm{~cm}$
Let OC be x . Therefore, $\mathrm{O}^{\prime} \mathrm{C}$ will be $4-\mathrm{x}$.
In $\triangle \mathrm{OAC}_{1}$
$\mathrm{OA}^{2}=\mathrm{AC}^{2}+\mathrm{OC}^{2}$
$5^{2}=\mathrm{AC}^{2}+\mathrm{x}^{2}$
$\Rightarrow 25-x^{2}=\mathrm{AC}^{2}$.
In $\triangle \mathrm{O}^{\prime} \mathrm{AC}_{1}$
$\mathrm{O}^{\prime} \mathrm{A}^{2}=\mathrm{AC}^{2}+\mathrm{O}^{\prime} \mathrm{C}^{2}$
$3^{2}=\mathrm{AC}^{2}+(4-\mathrm{x})^{2}$
$9=A C^{2}+16+x^{2}-8 x$
$A C^{2}=-x^{2}-7+8 x \ldots \ldots$. (2)
From equations (1) and (2), we obtain
$25-x^{\wedge}\{2\}=-x^{\wedge}\{2\}-7+8 x$
$8 \mathrm{X}=32$
$\mathrm{x}=4$
Therefore, the common chord will pass through the centre of the smaller circle i.e., O ' and hence, it will be the diameter of the smaller circle.

$A C^{2}=25-x^{2}=25-4^{2}=25-16=9$
$\mathrm{AC}=3 \mathrm{~m}$
Length of the common chord $\mathrm{AB}=2 \mathrm{AC}=(2 \times 3) \mathrm{m}=6 \mathrm{~m}$
Page : 179 , Block Name : Exercise 10.4

Q2 If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Answer. Let PQ and RS be two equal chords of a given circle and they are intersecting each other at point T.

Draw perpendiculars OV and OU on these chords.
In $\triangle O V T$ and DeltaOUT
$\mathrm{OV}=\mathrm{OU}$ (Equal chords of a circle are equidistant from the centre)
$\angle \mathrm{OVT}=\angle \mathrm{OUT}$ (each 90 degree)
OT=OT (common)
$\Delta O V T \equiv \Delta O U T$ (RHS congruence rule)
$\mathrm{VT}=\mathrm{UT}$ (By CPCT)
It is given that,
PQ=RS .(2)
$\frac{1}{2} \mathrm{PQ}=\frac{1}{2} \mathrm{RS}$
PV=RU. \qquad
On adding equation (1) and (3), we obtain
PV + VT = RU + UT

PT= RT.
On subtracting equation (4) from equation (2),we obtain
PQ - PT = RU + UT
QT = ST
Equations (4) and (5) indicate that the corresponding segments Of chords PQ and RS are congruent to each other.

Page : 179 , Block Name : Exercise 10.4
Q3 If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Answer.

Let PQ and RS are two equal chords of a given circle and they are intersecting each other at point T.
Draw perpendiculars OV and OU on these chords.
In $\Delta O V T$ and DeltaOUT
$\mathrm{OV}=\mathrm{OU}($ Equal chords of a circle are equidistant from the centre)
$\angle \mathrm{OVT}=\angle \mathrm{OUT}$ (each 90 degree)
OT=OT (common)
$\Delta O V T=\Delta O U T$ (RHS congruence rule)
$\square O T V=\square O T U$
Therefore, it is proved that the line joining the point Of intersection to the centre makes equal angles with the chords.

Page : 179 , Block Name : Exercise 10.4

Q4 If a line intersects two concentric circles (circles with the same centre) with centre O at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D, prove that $A B=C D$ (see Fig. 10.25).

Answer. Let us draw a perpendicular OM on line AD.

It can be observed that BC is the chord Of the smaller circle and AD is the chord Of the bigger circle.
We know that perpendicular drawn from the centre of the circle bisects the chord.
$\square \mathrm{BM}=\mathrm{MC} \ldots$ (1)
And, $\mathrm{AM}=\mathrm{MD} \ldots(2)$
On subtracting equation (2) from (1), we obtain
$\mathrm{AM}-\mathrm{BM}=\mathrm{MD}-\mathrm{MC}$
$\square A B=C D$

Page : 179 , Block Name : Exercise 10.4

Q5 Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Answer. Draw perpendiculars OA and 03 on RS and SM respectively.

$\mathrm{AR}=\mathrm{AS}=\frac{6}{2}=3 \mathrm{~m}$
$\mathrm{OR}=\mathrm{OS} \mathrm{OM}=5 \mathrm{~m}$ (radi of the circle)
In $\Delta O A R_{1}$
$\mathrm{OA}^{2}+\mathrm{AR}^{2}=\mathrm{OR}^{2}$
$\mathrm{OA}^{2}+(3 \mathrm{~m})^{2}=(5 \mathrm{~m})^{2}$
$\mathrm{OA}^{2}=(25-9) \mathrm{m}^{2}=16 \mathrm{~m}^{2}$
$\mathrm{OA}=4 \mathrm{~m}$
$\{$ ORSM will be a kite $\}(\backslash$ mathrm $\{\mathrm{OR}\}=\backslash$ mathrm $\{\mathrm{OM}\} \backslash$ text $\{$ and $\} \backslash$ mathrm\{RS $\}=\backslash$ mathrm $\{\mathrm{SM}\} \backslash)$. We know that the diagonals of a kite are perpendicular and the diagonal common to both the isosceles triangles is bisected by another diagonal.
$\square \square R C S$ will be of 90° and $R C=C M$
Area of $\triangle \mathrm{ORS}=\frac{1}{2} \times \mathrm{OA} \times \mathrm{RS}$
$\frac{1}{2} \times \mathrm{RC} \times \mathrm{OS}=\frac{1}{2} \times 4 \times 6$
RC $\times 5=24$
$\mathrm{RC}=4.8$
$R M=2 R C=2(4.8)=9.6$

Therefore, the distance between Reshma and Mandip is 9.6 m .

Page : 179 , Block Name : Exercise 10.4

Q6 A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Answer.

It iS Given that AS = SD - DA
Therefore, $\triangle \mathrm{ASD}$ is an equilateral triangle.
OA (radius) $=20 \mathrm{~m}$
Medians of equilateral triangle pass through the circum entre (O) of the equilateral triangle ASD. We also know that medians intersect each other in the ratio 2: 1 . As
$A B$ is the median of equilateral triangle ASD, we can write
$\Rightarrow \frac{\mathrm{OA}}{\mathrm{OB}}=\frac{2}{1}$
$\Rightarrow \frac{20 \mathrm{~m}}{\mathrm{OB}}=\frac{2}{1}$
$\Rightarrow \mathrm{OB}=\left(\frac{20}{2}\right) \mathrm{m}=10 \mathrm{~m}$
$\square A B=O A+O B=(20+10) m=30 \mathrm{~m}$
$\triangle \mathrm{ABD}$,
$\mathrm{AD}^{2}=\mathrm{AB}^{2}+\mathrm{BD}^{2}$
$A D^{2}=(30)^{2}+\left(\frac{A D}{2}\right)^{2}$
$\mathrm{AD}^{2}=900+\frac{1}{4} \mathrm{AD}^{2}$
$\frac{3}{4} \mathrm{AD}^{2}=900$
$\mathrm{AD}^{2}=1200$
$\mathrm{AD}=20 \sqrt{3}$
Therefore , the length of the string of each phone will be $20 \sqrt{3} \mathrm{~m}$
Page : 179, Block Name : Exercise 10.4

Exercise 10.5

Q1 In Fig. 10.36, A, B and C are three points on a circle with centre O such that $\angle \mathrm{BOC}=30^{\circ}$ and \angle $A O B=60^{\circ}$. If D is a point on the circle other than the arc $A B C$, find $\angle A D C$.

Answer.

It can observed that
$\square A O C=\square A O B+$ $\square B O C$

$$
\begin{aligned}
b & =60^{\circ}+30^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

We know that angle subtended by an arc at the centre is double the angle subtended
by it any point on the remaining part of the circle.
$\angle \mathrm{ADC}=\frac{1}{2} \angle \mathrm{AOC}=\frac{1}{2} \times 90^{\circ}=45^{\circ}$

Page : 184 , Block Name : Exercise 10.5

Q2 A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Answer.

In $\triangle O A B$
$\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$ (radius)
$\square \triangle \mathrm{OAB}$ is an equilateral triangles.
$\square \square A O B=60^{\circ}$
$\angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ}$
In cyclic equilateral ABCD ,
$\square A C B+\square A D B=180^{\circ}$ (opposite angle in cyclic quadrilateral)
$\square A D B=180^{\circ}-30^{\circ}=150^{\circ}$
Therefore, angle subtended by this chord at a point on the major arc and the minor arc are \backslash ($30^{\wedge} \backslash$ circ $\}$ text $\{$ and $\} 150^{\wedge} \wedge$ circ $\}$) respectively

Page : 185 , Block Name : Exercise 10.5

Q3 In Fig. 10.37, $\angle \mathrm{PQR}=100^{\circ}$, where P, Q and R are points on a circle with centre O . Find $\angle \mathrm{OPR}$.

Answer.

Consider PR as a chord of the circle.
Take any point S on the major arc of the circle.
PQRS is a cyclic quadrilateral.

$$
\begin{aligned}
& \square \mathrm{PQR}+\square \mathrm{PSR}=180^{\circ} \\
& \square \square \mathrm{PSR}=180^{\circ}-100^{\circ}=80
\end{aligned}
$$

We know that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$
\exists P O R=2 \square P S R=2\left(80^{\circ}\right)=160^{\circ}
$$

In $\triangle \mathrm{POR}$
$\mathrm{OP}=\mathrm{OR}$ (radii of the same circle)
$\square \square O P R=\square O R P$ (Angles opposite to equal sides of a triangle)
$2 \square O P R+160^{\circ}=180^{\circ}$
$2 \square O P R=180^{\circ}-160^{\circ}=20^{\circ}$
$\square \mathrm{OPR}=10^{\circ}$

Page : 185 , Block Name : Exercise 10.5

Q4 In Fig. 10.38, $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$.

Answer.

In $\triangle \mathrm{ABC}, \angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$
So, $\angle B A C=180^{\circ}-\left(69^{\circ}+31^{\circ}\right)$
$=180^{\circ}-100^{\circ}$
$=80^{\circ}$
$\angle B D C=\angle B A C=80^{\circ}$ (at same are BC)
Page : 185 , Block Name : Exercise 10.5
Q5 In Fig. 10.39, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle \mathrm{BEC}=130^{\circ}$ and $\angle \mathrm{ECD}=20^{\circ}$. Find $\angle \mathrm{BAC}$.

Fig. 10.39
Answer. In $\triangle \mathrm{CDE}$
$\square \mathrm{CDE}+\square \mathrm{DCE}=\square \mathrm{CEB}$ (exterior angle
$\square \square C D E+20^{\circ}=130^{\circ}$
$\square \square C D E=110^{\circ}$
However , $\square B A C=\square C D E$ (angles in the same segment of a circle)
$\square \square B A C=110^{\circ}$
Page : 185 , Block Name : Exercise 10.5
Q6 ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}, \angle \mathrm{BAC}$ is 30°, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.

Answer.

$\square \mathrm{CBD}=\square \mathrm{CAD}$
$\square C A D=70^{\circ}$
$\square B A D=D B A C+\square C A D=30^{\circ}+70^{\circ}=100^{\circ}$
$\square B C D+D B A D=180^{\circ}$
$\square B C D+100^{\circ}=180^{\circ}$
$\square B C D=80^{\circ}$

In $\triangle \mathrm{ABC}$
$A B=B C($ Given $)$
$\square \square B C A=\square C A B$
$\square \square B C A=30^{\circ}$
We have $\square B C D=80^{\circ}$
$\square \square B C A+\square A C D=80^{\circ}$
$30^{\circ}+\square A C D=80^{\circ}$
$\square \square A C D=50^{\circ}$
$\square \square E C D=50^{\circ}$

Page : 185 , Block Name : Exercise 10.5
Q7 If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Answer.

Let ABCD be a cyclic quadrilateral having diagonals BD and AC , intersecting each other at point 0 .
$\angle B A D=\frac{1}{2} \angle B O D=\frac{180^{\circ}}{2}=90^{\circ}$
(consider AC is chord)
$\square A D C+\square A B C=180^{\circ}$ (cyclic quadrilateral)
$90^{\circ}+\square A B C=180^{\circ}$
$\square A B C=90^{\circ}$
Each interior angle of a cyclic quadrilateral is of 90 degree. Hence, it is a rectangle.

Page : 185, Block Name : Exercise 10.5
Q8 If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Answer.

Consider a trapezium ABCD with AB I ICD and BC AD.
$\square \mathrm{CD}$ and $\mathrm{BN} \square \mathrm{CD}$.
$\mathrm{AM}=\mathrm{BM}$ (perpendicular distance between two parallel lines is same)
$\square \triangle A M D \square \triangle B N C$ (RHS congruence rules)$\square A D C=\square B C D$ (СРСТ)
$\square B A D$ and $\square A D C$ are on the same side of transversal AD$B A D+\square A D C=180^{\circ}$ \qquad (2)
$\square B A D+\square B C D=180^{\circ}$ [using equation
This equation shows that the opposite angles are supplementary. Therefore, ABCD is a cyclic quadrilateral.

Page : 185 , Block Name : Exercise 10.5
Q9 Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 10.40). Prove that $\angle \mathrm{ACP}=\angle$ QCD.

Fig. 10.40

Answer.

Join chords AP and DQ.
For chord AP,
$\square P B A=\square A C P$ (Angles in the same segment)
For chord DQ,
$\square D B Q=\square Q C D$ (Angles in the same segment)
ABD and PBQ are line segments intersecting at B .
$\square P B A=\square A C P$ (Angles in the same segment) \qquad
From equation (1) ,(2) , and (3),we obtain
$\square A C P=\square Q C D$

Page : 186 , Block Name : Exercise 10.5

Q10 If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Answer.

consider a $\triangle \mathrm{ABC}$.
Two circles are drawn while taking AB and AC as the diameter.
Let they intersect each other at D and let D not lie on BC .
join AD.
$\square A D B=90^{\circ}$ (angle subtended by semi - circle)
$\square A D C=90^{\circ}$ (angle subtended by semi - circle)
$\square B D C=\square A D B+\square A D C=90^{\circ}+90^{\circ}=180^{\circ}$
Therefore, $B D C$ is a straight line and hence, our assumption was wrong. Thus, Point D lies on third side BC of $\triangle A B C$.

Page : 186 , Block Name : Exercise 10.5
Q11 ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$.

Answer.
$\triangle \mathrm{ABC}$
$\square A B C+\square B C A+\square C A B=180^{\circ}$ (Angle sum property of a triangle)

$$
\square 90^{\circ}+\square B C A+\square C A B=180^{\circ}
$$

$$
\begin{equation*}
\square B C A+\square C A B=90^{\circ} . \tag{1}
\end{equation*}
$$

$\triangle \mathrm{ADC}$
$\square C D A+\square A C D+\square D A C=180^{\circ}$ (Angle sum property of a trinangle)
$\square 90^{\circ}+\square A C D+\square D A C=180^{\circ}$
$\square \square A C D+\square D A C=90^{\circ}$

Adding equation (1) and (2) ,we obtain
$\square B C A+\square C A B+\square A C D+\square D A C=180^{\circ}$
$\square(\square B C A+\square A C D)+(\square C A B+\square D A C)=180^{\circ}$
$\square B C D+\square D A B=180^{\circ}$ \qquad
However, it is given that
$\square B+$ \square $D=90^{\circ}+90^{\circ}=180^{\circ}$ \qquad
From equations (3) and (4), it can be observed that the sum of the measures of opposite angles Of quadrilateral A3CD is 1800 . Therefore, it is a cyclic quadrilateral. Consider chord CD.
$\square C A D=\square C B D$ (angle in the same segment)

Page : 186, Block Name : Exercise 10.5
Q12 Prove that a cyclic parallelogram is a rectangle.

Answer.

Let ABCD be a cyclic parallelogram.
$\square A+\square C=180^{\circ}$
We know that opposite angles Of a parallelogram are equal.
$\square A=\square C$ and $\square B=\square D$
From equation (1),
$\square A+\square C=180^{\circ}$
$\square \square A+\square A=180^{\circ}$
$\square 2 \square A=180^{\circ}$
$\square \square A=90^{\circ}$
Parallelogram ABCD has one of its interior angles as 900 . Therefore, it is a rectangle.

Page : 186 , Block Name : Exercise 10.5

Exercise 10.6

Q1 Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Answer.

Let two circles having their centres as O and O ' intersect each other at point A and B respectively. Let us join O^{\prime}

In \backslash Delta $\mathrm{AOO}^{\wedge} \wedge$ prime $\} \backslash$ text $\{$ and $\}$ B $\mathrm{O}^{\wedge} \bigwedge$ prime $\}$
$\mathrm{OA}=\mathrm{OB}$
$\mathrm{O}^{\prime} \mathrm{A}=\mathrm{O}^{\prime} \mathrm{B}$
$\mathrm{OO}^{\prime}=\mathrm{OO}^{\prime}$ (common)
$\triangle \mathrm{AO}^{\mathrm{O}^{\prime}} \square \Delta \mathrm{BO}^{\mathrm{O}^{\prime}}$ (by CPCT)
Therefore, line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Page : 186 , Block Name : Exercise 10.6 (Optional)

Q2 Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is 6 cm , find the radius of the circle.

Answer. Draw OM \backslash square AB and $\mathrm{ON} \backslash$ square CD .
join OB and OD

$\mathrm{BM}=\frac{\mathrm{AB}}{2}=\frac{5}{2}$
$\mathrm{ND}=\frac{\mathrm{CD}}{2}=\frac{11}{2}$
Let ON be x . Therefore, 0 M will be $6-\mathrm{x}$.
In $\triangle \mathrm{MOB}$
$\mathrm{OM}^{2}+\mathrm{MB}^{2}=\mathrm{OB}^{2}$
$(6-x)^{2}+\left(\frac{5}{2}\right)^{2}=\mathrm{OB}^{2}$
$36+x^{2}-12 x+\frac{25}{4}=\mathrm{OB}^{2}$.
In $\triangle \mathrm{NOD}$
$\mathrm{ON}^{2}+\mathrm{ND}^{2}=\mathrm{OD}^{2}$
$x^{2}+\left(\frac{11}{2}\right)^{2}=\mathrm{OD}^{2}$
$x^{2}+\frac{121}{4}=\mathrm{OD}^{2}$.
We have 0B = OD (Radii of the same circle)
Therefore, from equation (1) and (2),
$36+x^{2}-12 x+\frac{25}{4}=x^{2}+\frac{121}{4}$
$12 x=36+\frac{25}{4}-\frac{121}{4}$
$=\frac{144+25-121}{4}=\frac{48}{4}=12$
$\mathrm{x}=1$
From equation (2),
$(1)^{2}+\left(\frac{121}{4}\right)=\mathrm{OD}^{2}$
$\mathrm{OD}^{2}=1+\frac{121}{4}=\frac{125}{4}$
$\mathrm{OD}=\frac{5}{2} \sqrt{5}$
Therefore , the radius of circle is $(\backslash \operatorname{frac}\{5\}\{2\} \backslash$ sqrt $\{5\} \backslash) \mathrm{cm}$.
Page : 186 , Block Name : Exercise 10.6 (Optional)

Q3 The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?

Answer.

Let AB and CD be two parallel chords in a circle centered at O . Join 03 and 00.
Distance of smaller chord AB from the centre of the circle $=4 \mathrm{~cm}, 0 \mathrm{M}=4 \mathrm{~cm}$
$\mathrm{MB}=\frac{\mathrm{AB}}{2}=\frac{6}{2}=3 \mathrm{~cm}$
In $\triangle O M B$
$\mathrm{OM}^{2}+\mathrm{MB}^{2}=\mathrm{OB}^{2}$
$(4)^{2}+(3)^{2}=\mathrm{OB}^{2}$
$16+9=\mathrm{OB}^{2}$
$\mathrm{OB}=\sqrt{25}$
$\mathrm{OB}=5 \mathrm{~cm}$
In In $\triangle O N D$
$\mathrm{OD}=\mathrm{OB}=5 \mathrm{~cm}$
$\mathrm{ND}=\frac{\mathrm{CD}}{2}=\frac{8}{2}=4 \mathrm{~cm}$
$\mathrm{ON}^{2}+\mathrm{ND}^{2}=\mathrm{OD}^{2}$
$\mathrm{ON}^{2}+(4)^{2}=(5)^{2}$
$\mathrm{ON}^{2}=25-16=9$
$\mathrm{ON}=3 \mathrm{~cm}$
Therefore, the distance of the bigger chord from the centre is 3 cm .
Page : 186 , Block Name : Exercise 10.6 (Optional)
Q4 Let the vertex of an angle $A B C$ be located outside a circle and let the sides of the angle intersect equal chords $A D$ and $C E$ with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.

Answer.

In $\triangle \mathrm{AOD}$ and $\triangle \mathrm{COE}$
$\mathrm{OA}=\mathrm{OC}$ (Radii Of the same circle)
$\mathrm{OD}=\mathrm{OE}$ (Radii of the same circle)
$\mathrm{AD}=\mathrm{CE}$ (Given)
$\square \triangle A O D \square \Delta C O E$ (SSS congruence rule)
$\square O A D=\square O C E$ (by CPCT)
$\square O D A=\square O E C$ (by CPCT)
Also,
$\square O A D=\square O D A(A S O A=O D)$
From equations (1), (2), and (3), we obtain
$\square O A D=\square O C E=\square O D A=\square O E C$
Let $\square O A D=\square O C E=\square O D A=\square O E C=x$
In $\triangle \mathrm{OAC}$
$\mathrm{OA}=\mathrm{OC}$
$\square \square O C A=\square O A C$ (Let a)
In $\triangle \mathrm{ODE}$
OD=OE
$\square O E D=\square O D E$ (Let y)
ADEC is a cyclic quadrilateral,
$\square \square C A D+\square D E C=180^{\circ}$
$x+a+x+y=180^{\circ}$
$2 x+a+y=180^{\circ}$
$y=180^{\circ}-2 x-a \ldots(4)$
However $\square A O C=180^{\circ}-2 a$
And $\square A O C=180^{\circ}-2 a$
$\square D O E-\square A O C=2 a-2 y=2 a-2\left(180^{\circ}-2 x-a\right)$
$=4 a+4 x-360^{\circ}$
$\square B A C+\square C A D=180^{\circ}$
$\square \square B A C=180^{\circ}-\square C A D=180^{\circ}-(a+x)$
Similarly $\square A C B=180^{\circ}-(a+x)$
In $\triangle \mathrm{ABC}$
$\square A B C+D B A C+D A C B=180^{\circ}$ (Angle sum property of a triangle)
$\square A B C=180^{\circ}-\square B A C-\square A C B$
$=180^{\circ}-\left(180^{\circ}-a-x\right)-\left(180^{\circ}-a-x\right)$
$=2 a+2 x-180^{\circ}$
$=\frac{1}{2}\left[4 a+4 x-360^{\circ}\right]$
$\square A B C=\frac{1}{2}[\square D O E-\square A O C][U$ sing equation (5)]

Page : 186 , Block Name : Exercise 10.6 (Optional)

Q5 Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.

Answer.

Let \} A B C D be a rhombus in which diagonals are intersecting at point O and a circle is drawn while taking side CD as its diameter. We know that a diameter subtends $90^{\wedge}\{$ circ $\}$ on the arc.
$\square C O D=90^{\circ}$
Also, in rhombus, the diagonals intersect each other at $90^{\wedge}\{$ circ $\}$
$\square A O B=\square B O C=\square C O D=\square D O A=90^{\circ}$
Clearly , point O has to lie on the circle.

Page : 186 , Block Name : Exercise 10.5 (Optional)

Q6 ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that $\mathrm{AE}=\mathrm{AD}$.

Answer.

It can be observed that ABCE is a cyclic quadrilateral and in a cyclic quadrilateral, the sum of the opposite angles is $180^{\wedge} \backslash$ circ $\}$
$\square A E C+\square C B A=180^{\circ}$
$\square A E C+\square A E D=180^{\circ}$
$\square A E D=\square C B A$.
For a parallelogram, opposite angles are equal.
$\square A D E=\square C B A$
From (1) and (2)
$\square A E D=\square A D E$
$\mathrm{AD}=\mathrm{AE}$ (Angles opposite to equal sides of a triangle)
Page : 186 , Block Name : Exercise 10.6 (Optional)
Q7 AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters, (ii) ABCD is a rectangle.

Answer.

Let two choms $A a$ and $C D$ are intersecting each other at point 0 .
In $\triangle A O B$ and $\triangle C O D$,
$\mathrm{OA}=\mathrm{OC}$ (Given)
$\mathrm{OB}=\mathrm{OD}$ (Given)
$\square A O B=\square C O D$
$\triangle \mathrm{AOB} \square \Delta \mathrm{COD}$ (SAS congruence rules)
$\mathrm{AB}=\mathrm{CD}$ (by CPCT)
Similarly, it can be proved that $\triangle A O D \square \Delta C O B$
$\mathrm{AD}=\mathrm{CB}$ (by CPCT)
Since in quadrilateral ACBD, opposite sides are equal in length, ACBD is a parallelogram.
We know that opposite angles of a parallelogram are equal.
$\mathrm{OA}=\mathrm{OC}$
However OA+ OC=180
$\mathrm{OA}+\mathrm{OA}=180$
$2 \mathrm{OA}=180$
$\mathrm{OA}=90$
As ACBD is a parallelogram and one of its interior angles is 900 , therefore, it is a rectangle.
$\left\{\backslash\right.$ squareA \}is the angle subtended by chord BD. And as \backslash square $\mathrm{A}=90^{\wedge} \wedge$ circ\}, therefore, B Dshould be the diameter of the circle. Similarly, A C \backslash text is the diameter of the circle. end

Page : 186 , Block Name : Exercise 10.6 (Optional)

Q8 Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are $90^{\circ}-12 \mathrm{~A}, 90^{\circ}-12 \mathrm{~B}$ and $90^{\circ}-12 \mathrm{C}$.

Answer.

It is given that $3 t$ is the bisector of $O B$.
$\square \square A B E=\frac{\angle B}{2}$
However
\qquad $A D E=$ \square $A B E$
$\square A D E=\frac{\angle B}{2}$
Similarly DACF $=\square A D F=\frac{\angle C}{2}$
$\square D=\square A D E+\square A D F$
$=\frac{1}{2}(\angle B+\angle C)$
$=\frac{1}{2}\left(180^{\circ}-\angle A\right)$
$=90^{\circ}-\frac{1}{2} \angle \mathrm{~A}$
Similarly it can be proved that
$\angle \mathrm{E}=90^{\circ}-\frac{1}{2} \angle \mathrm{~B}$
$\angle \mathrm{F}=90^{\circ}-\frac{1}{2} \angle \mathrm{C}$

Page : 186 , Block Name : Exercise 10.5 (Optional)
Q9 Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that $\mathrm{BP}=\mathrm{BQ}$.

Answer.

AB is the common chord in both the congruent circles.
$\square \square A P B=\square A Q B$
In $\triangle B P Q$

$\square A P B=\square A Q B$

$\square \mathrm{BQ}=\mathrm{BP}\{$ Angles opposite to equal sides of a triangle) $\}$

Page : 186 , Block Name : Exercise 10.6 (Optional)

Q10 In any triangle ABC , if the angle bisector of $\angle \mathrm{A}$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle $A B C$.

Answer.

Let perpendicular bisector of side 3C and angle bisector of OA meet at point D. Let the perpendicular bisector of side 3C intersect it at E .
Perpendicular bisector of side BC will pass through circumcentre O of the circle.
delta $\backslash B O C$ and delta $\backslash B A C$ are the angles subtended by arc $B C$ at the centre and a point A on the remaining part of the circle respectively. We also know that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$\square B O C=2 \square B A C=2 \square A$
In $\triangle B O E$ and $\triangle C O E$
$\mathrm{OE}=\mathrm{OE}$ (common)
$\mathrm{OB}=\mathrm{OC}$
$\square O E B=\square O E C$
$\square \triangle B O E \square \square C O E$
However $\square B O E+\square C O E=\square B O C$
$\square B O E+\square B O E=2 \square A$
$\square 2 \square B O E=2 \square A$
$\square \square B O E=\square A$
$\square \square B O E=\square C O E=\square A$
The perpendicular bisector Of side BC and angle bisector Of ÜA meet at point D .
$\square \square B O D=\square B O E=\square A$ \qquad
Since $A D$ is the bisector of angle OA
$\square 2 \square B A D=\square A$.
From equations (3) and (4), we obtain
$\square B O D=2 \square B A D$
This can be possible only when point BD Will be a chord Of the circle. For this, the point D lies on the circum circle.
Therefore, the perpendicular bisector of side BC and the angle bisector of OA meet on the circum circle of triangle $A B C$.

Page : 186 , Block Name : Exercise 10.6 (Optional)

