NCERT

SOLUTIONS

CLASS - 9th

aglasem.com

Class : 9th
Subject: Maths
Chapter: 11
Chapter Name : CONSTRUCTIONS

Exercise 11.1

Q1 Construct an angle of 900 at the initial point of a given ray and justify the construction.

Answer. The below given steps will be followed to construct an angle of 90°.
(i) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn att at S.
(iii) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(v) Join PLJ, which is the required ray making 90° with the given ray PQ .

Justification of Construction:
We can justify the construction, if we can prove $\angle \mathrm{UPQ}=90^{\circ}$
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of $\angle \mathrm{TPS}$.
$\therefore \angle \mathrm{UPS}=\frac{1}{2} \angle \mathrm{TPS}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
Also, $\angle \mathrm{UPQ}=\angle \mathrm{SPQ}+\angle \mathrm{UPS}$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$

Page : 191, Block Name : Exercise 11.1
Q2 Construct an angle of 450 at the initial point of a given ray and justify the construction.
Answer. The below given steps will be followed to construct an angle of 45°.
(i) Take the given ray PQ. Draw an arc of some radius taking point P as its centre, which intersects PQ at R.
(ii) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(iii) Taking S as centre and With the same radius as before, draw an arc intersecting the arc at T (see figure).
(iv) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(v) join PU. Let it intersect the arc at point V .
(vi) From R and V , draw arcs with radius more than $1 / 2 \mathrm{RV}$ to intersect each other at W . Join PW.
PW is the required ray making 45^{0} with PQ .

Justification of Construction:
We can justify the construction, if we can prove $\angle \mathrm{WPQ}=45^{\circ}$
For this, join PS and PT.

We have, $\angle \mathrm{SPQ}=\angle \mathrm{TPS}=60^{\circ}$. In (iii) and (iv) steps of this construction, PU was drawn as the bisector of $\angle \mathrm{TPS}$.
$\therefore \angle U P S=\frac{1}{2} \angle \mathrm{TPS}=\frac{60^{\circ}}{2}=30^{\circ}$
Also, $\angle U P Q=\angle S P Q+\angle U P S$
$=60^{\circ}+30^{\circ}$
$=90^{\circ}$
In step (vi) of this construction, PW was constructed as the bisector of $\angle \mathrm{UPQ}$.
$\therefore \angle \mathrm{WPQ}=\frac{1}{2} \angle \mathrm{UPQ}=\frac{90^{\circ}}{2}=45^{\circ}$

Page : 191 , Block Name : Exercise 11.1

Q3 Construct the angles of the following measurements:
(i) 30° (ii) $22 \frac{1}{2}^{\circ}$ (iii) 15°

Answer. (i) 30^{0}
The below given steps will be followed to construct an angle of 30°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.
Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S .
Step III: Taking R and S as centre and with radius more than 2 RS, draw arcs to intersect each other at T. Join PT which is the required ray making 30° with the given ray PQ.

(ii) $22 \frac{1}{2} \circ$

The below given steps will be followed to construct an angle of $22 \frac{1}{2} \circ$.
(1) Take the given ray PQ. Draw an arc of some radius, taking point p as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join Let it intersect the arc at point V.
(6) From R and V, draw arcs with radius more than $\frac{1}{2} R V$ to intersect each other at W. Join PW.
(7) Let it intersect the arc at X . Taking X and R as centre and radius more than $\frac{1}{2} \mathrm{RX}$, draw arcs to intersect each other at Y .

Joint PY which is the required ray making $22 \frac{1}{2} \circ$ with the given ray PQ .

(iii) 15°

The below given steps will be followed to construct an angle of 15°.
Step I: Draw the given ray PQ. Taking P as centre and with some radius, draw an arc of a circle which intersects PQ at R.
Step II: Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at point S.
Step Ill: Taking R and S as centre and with radius more than $1 / 2$ RS, draw arcs to intersect each other at T. Join PT.
Step IV: Let it intersect the arc at U. Taking IJ and R as centre and with radius more than $1 / 2$ RU, draw an arc to intersect each other at V . Join PV which is the required ray making 15° with the given ray PQ.

Page : 191, Block Name : Exercise 11.1

Q4 Construct the following angles and verify by measuring them by a protractor:
(i) 75° (ii) 105° (iii) 135°

Answer. (i) 75°
The below given steps will be followed to construct an angle of 75°.
(1) Take the given ray PQ. Draw an arc of some radius taking point p as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join PLI. Let it intersect the arc at V. Taking S and V as centre, draw arcs with radius more than $1 / 2 \mathrm{SV}$. Let those intersect each other at W . Join PW which is the required ray making 75° with the given ray PQ .

The angle so formed can be measured with the help of a protractor. It comes to be 75°.
(ii) 105°

The below given steps will be followed to construct an angle of 105°
(1) Take the given ray PQ. Draw an arc of some radius taking point p as its centre, which intersects PQ at R.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join PLI. Let it intersect the arc at V. Taking T and V as centre, draw arcs with radius more than $1 / 2$ TV. Let these arcs intersect each other at W . Join PW which is the required ray making 105° with the given ray PQ .

The angle so formed can be measured with the help of a protractor. It comes to be 105°.
(iii) 135°

The below given steps will be followed to construct an angle of 135°
(1) Take the given ray PQ. Extend PQ on the opposite side of Q. Draw a semi-circle of some radius taking point P as its centre, which intersects $P Q$ at R and W.
(2) Taking R as centre and with the same radius as before, draw an arc intersecting the previously drawn arc at S.
(3) Taking S as centre and with the same radius as before, draw an arc intersecting the arc at T (see figure).
(4) Taking S and T as centre, draw an arc of same radius to intersect each other at U .
(5) Join PU. Let it intersect the arc at V . Taking V and W as centre and with radius more than $1 / 2 \mathrm{VW}$, draw arcs to intersect each other at X . Join PX , which is the required ray making 135° with the given line PQ.

The angle so formed can be measured with the help of a protractor. It comes to be 135°.

Page : 191, Block Name : Exercise 11.1

Q5 Construct an equilateral triangle, given its side and justify the construction.

Answer. Let us draw an equilateral triangle of side 5 cm . We know that all sides of an equilateral triangle are equal. Therefore, all sides of the equilateral triangle will be 5 cm . We also know that each angle Of an equilateral triangle is 60°.
The below given steps Will be followed to draw an equilateral triangle 0 cm side.
Step I: Draw a line segment $A B$ of 5 cm length. Draw an arc of some radius, while taking A as its centre. Let it intersect AB at P .
Step II: Taking P as centre, draw an arc to intersect the previous arc at E. join AE.
Step Ill: Taking A as centre, draw an arc of 5 cm radius, which intersects extended line segment AE at C . Join AC and BC . $\triangle \mathrm{ABC}$ is the required equilateral triangle of side 5 cm .

Justification of Construction:
We can justify the construction by showing ABC as an equilateral triangle i.e., $\mathrm{AB}=$ $\mathrm{BC}=\mathrm{AC}=5 \mathrm{~cm}$ and $\angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$. In $\triangle \mathrm{ABC}$, we have $\mathrm{AC}=\mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{A}=60^{\circ}$. since $A C=A B$ $\angle \mathrm{B}=\angle \mathrm{C}$ (Angles opposite to equal sides of a triangle)

In $\triangle A B C$,
$\angle A+\angle B+\square C=180^{\circ}$ (Angle sum property of a triangle)
$\square 60^{\circ}+\square C+\square C=180^{\circ}$
$\square 60^{\circ}+2 \square C=180^{\circ}$
$\square 2 \square C=180^{\circ}-60^{\circ}=120^{\circ}$
$\square \square C=60^{\circ}$
$\square \square B=\square C=60^{\circ}$
We have, $\square A=\square B=\square C=60^{\circ} \ldots$ (1)
$\square \square A=\square B$ and $\square A=\square C$
$\square \mathrm{BC}=\mathrm{AC}$ and $\mathrm{BC}=\mathrm{AB}$ (Sides opposite to equal angles of a triangle)
$\square \mathrm{AB}=\mathrm{BC}=\mathrm{AC}=5 \mathrm{~cm} \ldots$ (2)
from equations (1) and (2), /Delta ABC is an equilateral triangle.

Page : 191 , Block Name : Exercise 11.1
Exercise 11.2

Q1 Construct a triangle ABC in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm}$.

Answer. The below given steps will be followed to construct the required triangle. step I: Draw a line segment BC of 7 cm . At point B , draw an angle of 75°, say $\square \mathrm{XBC}$. step II: Cut a line segment $B D=13 \mathrm{~cm}$ (that is equal to $A B+A C$) from the ray $B X$. Step III: Join DC and make an angle DCY equal to \square BDC.
step IV: Let CY intersect 3 X at A . $\triangle \mathrm{ABC}$ is the required triangle.

Page : 195 , Block Name : Exercise 11.2

Q2 Construct a triangle ABC in which $\mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm}$.

Answer. The below given steps will be followed to draw the required triangle.
Step I: Draw the line segment $B C=8 \mathrm{~cm}$ and at point B, make an angle of 45°, say $\square \mathrm{XBC}$.
Step II: Cut the line segment BD 3.5 cm (equal to $\mathrm{AB}-\mathrm{AC}$) on ray BX.
Step Ill: Join DC and draw the perpendicular bisector PQ of DC.
Step IV: Let it intersect BX at point A . Join $\mathrm{AC} . \triangle \mathrm{ABC}$ is the required triangle.

Page : 195 , Block Name : Exercise 11.2
$Q 3$ Construct a triangle $P Q R$ in which $Q R=6 \mathrm{~cm}, \angle Q=60^{\circ}$ and $P R-P Q=2 \mathrm{~cm}$.

Answer. The below given steps will be followed to construct the required triangle.
Step I: Draw line segment $Q R$ of 6 cm . At point Q, draw an angle of 60°, say $\triangle X Q R$.
Step II: Cut a line segment QS of 2 cm from the line segment QT extended in the opposite side of line segment XQ (As PR > PQ and PR - PQ 2 cm). Join SR.
Step Ill: Draw perpendicular bisector $A B$ of line segment $S R$. Let it intersect $Q X$ at point P. Join PQ, PR.
$\triangle \mathrm{PQR}$ is the required triangle.

Page : 195, Block Name : Exercise 11.2

Q4 Construct a triangle XYZ in which $\angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ}$ and $\mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm}$.
Answer. The below given steps will be followed to construct the required triangle.
Step I: Draw a line segment AB of tl cm .
(As XY + YZ + ZX = 11 cm)
Step II: Construct an angle, $\square \mathrm{PAB}$, of 30^{0} at point A and an angle, $\square \mathrm{QBA}$, of 90^{0} at point 3 .
Step Ill: Bisect \square PAB and \square QBA. Let these bisectors intersect each other at point X.
Step IV: Draw perpendicular bisector ST of AX and UV of BX.
step V: Let ST intersect Ad at Y and UV intersect AB at Z.
W, XZ.
$\Delta \mathrm{XYZ}$ is the required triangle.

Page : 195 , Block Name : Exercise 11.2

Q5 . Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm .

Answer. The below given steps will be followed to construct the required triangle.
Step I: Draw line segment $A B$ of 12 cm . Draw a ray AX making 90° with $A B$.
Step II: Cut a line segment AD of 18 cm (as the sum of the other two sides is 18) from ray AX.
Step III: Join DB and make an angle DBY equal to ADB.
step IV: Let BY intersect AX at C. Join AC, BC.
$\triangle A B C$ is the required triangle.

Page : 195, Block Name : Exercise 11.2

