## NCERT

## SOLUTIONS

## CLASS - 9th


aglasem.com

Class : 9th
Subject: Maths
Chapter: 12
Chapter Name : Heron's Formula

## Exercise 12.1

Q1 A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' $a$ '. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?

Answer. Side of traffic signal board $=\mathrm{a}$
Perimeter of traffic signal board
$2 s=3 a \Rightarrow s=\frac{3}{2} a$
By Heron's formula,
Area of given triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of given triangle $=\sqrt{\frac{3}{2} a\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)\left(\frac{3}{2} a-a\right)}$

$$
\begin{equation*}
=\sqrt{\left(\frac{3}{2} a\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)} \tag{1}
\end{equation*}
$$

Perimeter of traffic signal board $=180 \mathrm{~cm}$
Side of traffic signal board $(a)=\left(\frac{180}{3}\right) \mathrm{cm}=60 \mathrm{~cm}$
Using equation (1), area of traffic signal board $=\frac{\sqrt{3}}{4}(60 \mathrm{~cm})^{2}$
$=\left(\frac{3600}{4} \sqrt{3}\right) \mathrm{cm}^{2}=900 \sqrt{3} \mathrm{~cm}^{2}$

Page : 202 , Block Name : Exercise 12.1
Q2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m (see Fig). The advertisements yield an earning of 5000 per $m^{2}$ per year. A company hired one of its walls for 3 months. How much rent did it pay?


Answer. The sides of the triangle (i.e., a, b, c) are of $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m respectively.
Perimeter of triangle $=(122+22+120) \mathrm{m}$
$2 \mathrm{~s}=264 \mathrm{~m}$
$\mathrm{s}=132 \mathrm{~m}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of given triangle $=[\sqrt{132(132-122)(132-22)(132-120)}] \mathrm{m}^{2}$

$$
=[\sqrt{132(10)(110)(12)}] \mathrm{m}^{2}=1320 \mathrm{~m}^{2}
$$

Rent of $1 \mathrm{~m}^{2}$ area per year $=$ Rs 5000
Rent of $1 m^{2}$ area per month $=$ Rs $\frac{5000}{12}$
Rent of $1320 m^{2}$ area per 3 month $=\operatorname{Rs}\left(\frac{5000}{12} \times 3 \times 1320\right)$
$=$ Rs $(5000 \times 330)=$ Rs 1650000
Therefore, the company had to pay Rs 1650000 .

Page : 202 , Block Name : Exercise 12.1

Q3 There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" (see Fig). If the sides of the wall are $15 \mathrm{~m}, 11$ m and 6 m , find the area painted in colour.


Answer. Sides of the triangular wall are $15 \mathrm{~m}, 11 \mathrm{~m}$, an 6 m .
Semi perimeter of triangular wall $(\mathrm{s})=(15+11+6) / 2 \mathrm{~m}=16 \mathrm{~m}$
Using Heron's Formula,

$$
\begin{aligned}
\text { Area of the message }= & \sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} \\
& =\sqrt{16(16-15)(16-11)(16-6)} \mathrm{m}^{2} \\
& =\sqrt{16 \times 1 \times 5 \times 10} \mathrm{~m}^{2}=\sqrt{800} \mathrm{~m}^{2} \\
& =20 \sqrt{2} \mathrm{~m}^{2}
\end{aligned}
$$

Page : 203 , Block Name : Exercise 12.1

Q4 Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Answer. Let the third side of the triangle be x.
Perimeter of the given triangle 42 cm
$18 \mathrm{~cm}+10 \mathrm{~cm}+\mathrm{x}=42$
$\mathrm{x}=14 \mathrm{~cm}$
$s=\frac{\text { Perimeter }}{2}=\frac{42 \mathrm{~cm}}{2}=21 \mathrm{~cm}$
By Heron's formula,
Area of a triangle $==\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
\text { Area of the given triangle } & =(\sqrt{21(21-18)(21-10)(21-14)}) \mathrm{cm}^{2} \\
& =\left(\sqrt{21(3)(11)(7))} \mathrm{cm}^{2}\right. \\
& =21 \sqrt{11} \mathrm{~cm}^{2}
\end{aligned}
$$

Page : 203 , Block Name : Exercise 12.1
Q5. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.
Answer. Let the common ratio between the sides of the given triangle be x .
Therefore, the side Of the triangle will be $12 \mathrm{x}, 17 \mathrm{x}$, and 25 x .
Perimeter of this triangle $=540 \mathrm{~cm}$
$12 \mathrm{x}+17 \mathrm{x}+25 \mathrm{x}=540 \mathrm{~cm}$
$54 \mathrm{x}=540 \mathrm{~cm}$
$\mathrm{x}=10 \mathrm{~cm}$
Sides of the triangle will be $120 \mathrm{~cm}, 170 \mathrm{~cm}$, and 250 cm .
$s=\frac{\text { Perimeter of triangle }}{2}=\frac{540 \mathrm{~cm}}{2}=270 \mathrm{~cm}$
By Heron's formula,

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{270(270-120)(270-170)(270-250)}] \mathrm{cm}^{2} \\
& =[\sqrt{270 \times 150 \times 100 \times 20}] \mathrm{cm}^{2}
\end{aligned}
$$

Therefore, the area Of this triangle is $9000 \mathrm{~cm}^{2}$.

Page : 203 , Block Name : Exercise 12.1
Q6 An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of the triangle.

Answer. Let the third side Of this triangle be x .
Perimeter of triangle $=30 \mathrm{~cm}$
$12 \mathrm{~cm}+12 \mathrm{~cm}+\mathrm{x}=30 \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{x}=6 \mathrm{~cm} \\
& s=\frac{\text { Perimeter of triangle }}{2}=\frac{30 \mathrm{~cm}}{2}=15 \mathrm{~cm}
\end{aligned}
$$

By Heron's formula,

$$
\begin{aligned}
\text { Area of triangle } & =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{15(15-12)(15-12)(15-6)}] \mathrm{cm}^{2} \\
& =[\sqrt{15(3)(3)(9)}] \mathrm{cm}^{2} \\
& =9 \sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

Page : 203 , Block Name : Exercise 12.1

## Exercise 12.2

Q1 A park, in the shape of a quadrilateral ABCD , has $\angle \mathrm{C}=90^{\circ}, \mathrm{AB}=9 \mathrm{~m}, \mathrm{BC}=12 \mathrm{~m}, \mathrm{CD}=5 \mathrm{~m}$ and $A D=8 \mathrm{~m}$. How much area does it occupy?

Answer. Let us join BD.
In A3CD, applying Pythagoras theorem,
$\mathrm{BD}^{2}=\mathrm{BC}^{2}+\mathrm{CD}^{2}$
$=(12)^{2}+(5)^{2}$
$=144+25$
$\mathrm{BD}^{2}=169$
$\mathrm{BD}=13 \mathrm{~m}$


Area of $\triangle B C D$
$=\frac{1}{2} \times \mathrm{BC} \times \mathrm{CD}=\left(\frac{1}{2} \times 12 \times 5\right) \mathrm{m}^{2}=30 \mathrm{~m}^{2}$
For $\Delta \mathrm{ABD}_{r}$
$s=\frac{\text { Perimeter }}{2}=\frac{(9+8+13) \mathrm{m}}{2}=15 \mathrm{~m}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\Delta \mathrm{ABD}=[\sqrt{15(15-9)(15-8)(15-13)}] \mathrm{m}^{2}$
$=(\sqrt{15 \times 6 \times 7 \times 2}) \mathrm{m}^{2}$
$=6 \sqrt{35} \mathrm{~m}^{2}$
$=(6 \times 5.916) \mathrm{m}^{2}$
$=35.496 \mathrm{~m}^{2}$
Area of the park $=$ Area of $\triangle \mathrm{ABD}+$ Area of $\Delta \mathrm{BCD}$
$=35.496+30 \mathrm{~m}^{2}=65.496 \mathrm{~m}^{2}=65.5 \mathrm{~m}^{2}$ ( approximately $)$

Page : 206 , Block Name : Exercise 12.2

Q2 Find the area of a quadrilateral ABCD in which $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{DA}=5 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.

Answer.


For $\triangle A B C$,
$A C^{2}=A B^{2}+B C^{2}$
$(5)^{2}=(3)^{2}+(4)^{2}$
Therefore, $\triangle A B C$ is a right-angled triangle, right-angled at point B .
Area of $\triangle \mathrm{ABC},=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}=\frac{1}{2} \times 3 \times 4=6 \mathrm{~cm}^{2}$

For $\triangle \mathrm{ADC}$,
Perimeter $=2 s=\mathrm{AC}+\mathrm{CD}+\mathrm{DA}=(5+4+5) \mathrm{cm}=14 \mathrm{~cm}$
$s=7 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle \mathrm{ADC}=[\sqrt{7(7-5)(7-5)(7-4)}] \mathrm{cm}^{2}$
$=(\sqrt{7 \times 2 \times 2 \times 3}) \mathrm{cm}^{2}$
$=2 \sqrt{21} \mathrm{~cm}^{2}$
$=(2 \times 4.583) \mathrm{cm}^{2}$
$=9.166 \mathrm{~cm}^{2}$
Area of $\mathrm{ABCD}=$ Area of $\triangle \mathrm{ABC}+$ Area of $\triangle \mathrm{ACD}$
$=(6+9.166) \mathrm{cm}^{2}=15.166 \mathrm{~cm}^{2}=15.2 \mathrm{~cm}^{2}$ ( approximately $)$
Page : 206, Block Name : Exercise 12.2
Q3 Radha made a picture of an aeroplane with coloured paper as shown in Fig 12.15. Find the total area of the paper used.


Answer.


This triangle is an isosceles triangle.
Perimeter $=2 s=(5+5+1) \mathrm{cm}=11 \mathrm{~cm}$
$s=\frac{11 \mathrm{~cm}}{2}=5.5 \mathrm{~cm}$
Area of the triangle ${ }^{-\sqrt{s(s-a)(s-b)(s-c)}}$
$=[\sqrt{5.5(5.5-5)(5.5-5)(5.5-1)}] \mathrm{cm}^{2}$
$=[\sqrt{(5.5)(0.5)(0.5)(4.5)}] \mathrm{cm}^{2}$
$=0.75 \sqrt{11} \mathrm{~cm}^{2}$
$=(0.75 \times 3.317) \mathrm{cm}^{2}$
$=2.488 \mathrm{~cm}^{2}$ (approximately)
For quadrilateral II
This quadrilateral is a rectangle.
Area $=I \times b=(6.5 \times 1) \mathrm{cm}^{2}=6.5 \mathrm{~cm}^{2}$
For quadrilateral Ill
This quadrilateral is a trapezium.
Perpendicular height of parallelogram $=\left(\sqrt{1^{2}-(0.5)^{2}}\right) \mathrm{cm}$
$=\sqrt{0.75} \mathrm{~cm}=0.866 \mathrm{~cm}$
Area $=$ Area of parallelogram + Area of equilateral triangle
$=(0.866) 1+\frac{\sqrt{3}}{4}(1)^{2}=0.866+0.433=1.299 \mathrm{~cm}^{2}$


Area of triangle (IV) = Area of triangle in (V)
$=\left(\frac{1}{2} \times 1.5 \times 6\right) \mathrm{cm}^{2}=4.5 \mathrm{~cm}^{2}$
Total area of the paper used $=2.488+6.5+1.299+4.5 \times 2$
$=19.287 \mathrm{~cm}^{2}$

Page : 206, Block Name : Exercise 12.2
Q4 A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm , and the parallelogram stands on the base 28 cm , find the height of the parallelogram.

Answer. For triangle
Perimeter of triangle $=(26+28+30) \mathrm{cm}=84 \mathrm{~cm}$
2s 84 cm
$\mathrm{s}=42 \mathrm{~cm}$
By Heron's formula,
Area of triangle $==\sqrt{s(s-a)(s-b)(s-c)}$
Area of triangle $=[\sqrt{42(42-26)(42-28)(42-30)}] \mathrm{cm}^{2}$
$=[\sqrt{42(16)(14)(12)}] \mathrm{cm}^{2}=336 \mathrm{~cm}^{2}=336 \mathrm{~cm}^{2}$
Let the height of the parallelogram be $h$.
Area of parallelogram = Area of triangle
$\mathrm{h} \times 28 \mathrm{~cm}=336 \mathrm{~cm}^{2}$
$\mathrm{h}=12 \mathrm{~cm}$
Therefore, the height of the parallelogram is 12 cm .
Page : 206, Block Name : Exercise 12.2
Q5 A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting?

Answer.


Let $A B C D$ be a rhombus-shaped field.
For $\triangle B C D$,
$s=\frac{(48+30+30) \mathrm{cm}}{2}=54 \mathrm{~m}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Therefore, area of $\triangle B C D=[\sqrt{54(54-48)(54-30)(54-30)}] \mathrm{m}^{2}$
$=\sqrt{54(6)(24)(24)}=3 \times 6 \times 24=432 \mathrm{~m}^{2}$
Area Of field $=2 \times$ Area Of ABCD
$=(2 \times 432) \mathrm{m}^{2}=864 \mathrm{~m}^{2}$
Area for grazing for 1 cow $=\frac{864}{18}=48 \mathrm{~m}^{2}$
Each cow will get $48 \mathrm{~m}^{2}$ area of grass field.
Page : 207, Block Name : Exercise 12.2

Q6 An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see Fig), each piece measuring $20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 50 cm . How much cloth of each colour is required for the umbrella?


Answer. For each triangular piece,

$$
s=\frac{(20+50+50) \mathrm{cm}}{2}=60 \mathrm{~cm}
$$

Semi-perimeter,
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of each triangular piece $=[\sqrt{60(60-50)(40-50)(60-20)}] \mathrm{cm}^{2}$

$$
=[\sqrt{60(10)(10)(40)}] \mathrm{cm}^{2}=200 \sqrt{6} \mathrm{~cm}^{2}
$$

Since there are 5 triangular pieces made of two different coloured cloths,
Area of each cloth required $=(5 \times 200 \sqrt{6}) \mathrm{cm}^{2}$
$=1000 \sqrt{6} \mathrm{~cm}^{2}$

Page : 207, Block Name : Exercise 12.2
Q7 A kite in the shape of a square with a diagonal 32 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in Fig. How much paper of each shade has been used in it?


8 cm

Answer. We know that
Area of square $=\frac{1}{2}(\text { diagonal })^{2}$
Area of the given kite $=\frac{1}{2}(32 \mathrm{~cm})^{2}=512 \mathrm{~cm}^{2}$
Area of 1 st shade $=$ Area of $2^{\text {nd }}$ shade
$=\frac{512 \mathrm{~cm}^{2}}{2}=256 \mathrm{~cm}^{2}$
Therefore, the area of paper required in each shape is $256 \mathrm{~cm}^{2}$.
For III triangle
Semi-perimeter, $s=\frac{(6+6+8) \mathrm{cm}}{2}=10 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of IIIrd triangle $=\sqrt{10(10-6)(10-6)(10-8)}$
$=(\sqrt{10 \times 4 \times 4 \times 2}) \mathrm{cm}^{2}$
$=(4 \times 2 \sqrt{5}) \mathrm{cm}^{2}$
$=\left(4 \times 2 \sqrt{5} \mathrm{~cm}^{2}\right.$
$=(8 \times 2.24) \mathrm{cm}^{2}$
$=17.92 \mathrm{~cm}^{2}$
Area of paper required for $I I I^{r d}$ shade $=17.92 \mathrm{~cm}^{2}$

Page : 207 , Block Name : Exercise 12.2

Q8 A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm (see Fig.). Find the cost of polishing the tiles at the rate of 50 p per $\mathrm{cm}^{2}$.


Answer. It can be observed that
Semi-perimeter of each triangle-shaped tile, $s=\frac{(35+28+9) \mathrm{cm}}{2}=36 \mathrm{~cm}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of each tile $=[\sqrt{36(36-35)(36-28)(36-9)}] \mathrm{cm}^{2}$
$=[\sqrt{36 \times 1 \times 8 \times 27}] \mathrm{cm}^{2}$
$=36 \sqrt{6} \mathrm{~cm}^{2}$
$=(36 \times 2.45) \mathrm{cm}^{2}$
$=88.2 \mathrm{~cm}^{2}$
Area of 16 tiles $=(16 \times 88.2) \mathrm{cm}^{2}=1411.2 \mathrm{~cm}^{2}$
Cost of polishing per $\mathrm{cm}^{2}$ area $=50 \mathrm{p}$
Cost of polishing $1411.2 \mathrm{~cm}^{2}$ area $=$ Rs $(1411.2 \times 0.50)=$ Rs 705.60
Therefore. It will cost Rs 705.60 while polishing all the tiles.

Page : 207, Block Name : Exercise 12.2
Q9 A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m . The nonparallel sides are 14 m and 13 m . Find the area of the field.

Answer.


Draw a line BE parallel to AD and draw a perpendicular 3F on CO.
It can be observed that ABED is a parallelogram.
$\mathrm{BE}=\mathrm{AD}=13 \mathrm{~m}$
$\mathrm{ED}=\mathrm{AB}=10 \mathrm{~m}$
$\mathrm{EC}=25-\mathrm{ED}=15 \mathrm{~m}$
For $\triangle$ BEC,
Semi-perimeter, ${ }^{s=\frac{(13+14+15) \mathrm{m}}{2}}=21 \mathrm{~m}$
By Heron's formula,
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Area of $\triangle B E C=[\sqrt{21(21-13)(21-14)(21-15)}] m^{2}$
$=[\sqrt{21(8)(7)(6)}]_{m^{2}=84 \mathrm{~m}^{2}}$
Area of $\triangle B E C=\frac{1}{2} \times C E \times B F$
$84 \mathrm{~cm}^{2}=\frac{1}{2} \times 15 \mathrm{~cm} \times \mathrm{BF}$
$\mathrm{BF}=\left(\frac{168}{15}\right) \mathrm{cm}=11.2 \mathrm{~cm}$
Area of $\mathrm{ABED}=\mathrm{BF} \times \mathrm{DE}=11.2 \times 10=112 \mathrm{~m}^{2}$
Area of the field $=84+112=196 \mathrm{~m}^{2}$
Page : 207, Block Name : Exercise 12.2

