NCERT

SOLUTIONS

CLASS - 9th

aglasem.com

Class : 9th
Subject: Maths
Chapter: 8
Chapter Name : QUADRILATERALS

Exercise 8.1

Q1 The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.

Answer. Let the common ratio between the angles be x. Therefore, the angles will be $3 x, 5 x, 9 x$, and $13 x$ respectively.
As the sum Of all interior angles Of a quadrilateral is 360°,
Therefore, $3 \mathrm{x}+5 \mathrm{x}+9 \mathrm{x}+13 \mathrm{x}=360^{\circ}$
$30 \mathrm{x}=360^{\circ}$
$\mathrm{x}=12^{\circ}$
Hence, the angles are
$3 x=3 \times 12=360$
$5 x=5 \times 12=60^{\circ}$
$9 x=9 \times 12=108^{\circ}$
$13 x=13 \times 12=156^{\circ}$

Page : 146 , Block Name : Exercise 8.1

Q2 If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Answer.

Let $A B C D$ be a parallelogram. To show that $A B C D$ is a rectangle, we have to prove that one of its interior angles is 90°.
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DCB}$,
$\mathrm{AB}=\mathrm{DC}$ (Opposite sides Of a parallelogram are equal)
$B C=B C$ (Common)
$\mathrm{AC}=\mathrm{DB}$ (Given)
$\therefore \triangle A B C \cong \triangle D C B$ (By SSS Congruence rule)
$\Rightarrow \angle A B C=\angle D C B$

It is known that the sum of the measures of angles on the same side of transversal is 180°.
$\angle A B C+\angle D C B=180^{\circ}(A B \| C D)$
$\Rightarrow \angle A B C+\angle A B C=180^{\circ}$
$\Rightarrow 2 \angle A B C=180^{\circ}$
$\Rightarrow \angle A B C=90^{\circ}$
Since $A B C D$ is a parallelogram and one of its interior angles is $90^{\circ}, A B C D$ is a rectangle.
Page : 146, Block Name : Exercise 8.1
Q3 Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Answer.

Let ABCD be a quadrilateral, whose diagonals AC and BD bisect each Other at right angle i.e., $\mathrm{OA}=\mathrm{OC}, \mathrm{OB}=\mathrm{OD}$, and $\angle A O B=\angle B O C=\angle C O D=\angle A O D=90^{\circ}$. To prove ABCD a rhombus, we have to prove ABCD is a parallelogram and all the sides of ABCD are equal.
In $\triangle \mathrm{AOD}$ and $\triangle \mathrm{COD}$,
$\mathrm{OA}=\mathrm{OC}$ (Diagonals bisect each other)
$\angle A O D=\angle C O D$ (Given)
$\mathrm{OD}=\mathrm{OD}$ (Common)
$\therefore \triangle A O D=\triangle C O D(B y$ SAS congruence rule $)$
$\therefore A D=C D(1)$
Similarly, it can be proved that
$\mathrm{AD}=\mathrm{AB}$ and $\mathrm{CD}=\mathrm{BC}$ (2)
From equations (1) and (2),
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
Since opposite sides of quadrilateral $A B C D$ are equal, it can be said that $A B C D$ is a parallelogram.
Since all sides of a parallelogram $A B C D$ are equal, it can be said that $A B C D$ is a rhombus.
Page : 146 , Block Name : Exercise 8.1
Q4 Show that the diagonals of a square are equal and bisect each other at right angles.
Answer.

Let ABCD be a square. Let the diagonals AC and BD intersect each other at a point O . To prove that the diagonals of a square are equal and bisect each other at right angles, we have to prove $A C=B D$, $\mathrm{OA}=\mathrm{OC}, \mathrm{OB}=\mathrm{OD}$, and $\angle A O B=90^{\circ}$.
In $\triangle A B C$ and $\triangle D C B$,
$\mathrm{AB}=\mathrm{DC}$ (Sides Of a square are equal to each Other)
$\angle A B C=\angle D C B$ (All interior angles are of 90°)
$\mathrm{BC}=\mathrm{CB}$ (Common side)
$\therefore \triangle \mathrm{ABC}=\Delta \mathrm{DCB}$ (By SAS congruency)
$\therefore \mathrm{AC}=\mathrm{DB}(\mathrm{ByCPCT})$
Hence, the diagonals of a square are equal in length.
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle A O B=\angle C O D$ (Vertically Opposite Angle)
$\square A B O=\square C D O$ (Alternate interior angles)
$\mathrm{AB}=\mathrm{CD}$ (Sides of a square are always equal)
$\square \triangle A O B \square \Delta C O D$ ($B y$ AAS congruence rule)
$\square A O=C O$ and $O B=O D(B y C P C T)$
Hence, the diagonals of a square bisect each other.
In $\triangle A O B$ and $\triangle C O B$,
As we had proved that diagonals bisect each other , therefore ,
$\mathrm{AO}=\mathrm{CO}$
$A B=C B$ (Sides of a square are equal)
BO = BO (Common)
$\square \triangle A O B \square \Delta C O B(B y$ SSS congruence rule)
$\square \square A O B=\square C O B(B y C P C T)$
However, $\square A O B+\square C O B=180^{\circ}$ (Linear pair)
$2 \square A O B=180^{\circ}$
$\square A O B=90^{\circ}$
Hence, the diagonals of a square bisect each other at right angles.

Page : 146, Block Name : Exercise 8.1
Q5 Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Answer.

Let us consider a quadrilateral ABCD in which the diagonals AC and BD intersect each other at O . It is given that the diagonals of ABCD are equal and bisect each other at right angles. Therefore, $\mathrm{AC}=\mathrm{BD}, \mathrm{OA}=\mathrm{OC}, \mathrm{OB}=\mathrm{OD}$, and $\angle A O B=\angle B O C=\angle C O D=\angle A O D=90^{\circ}$. To prove $A B C D$ is a square, we have to prove that $A B C D$ is a parallelogram, $A B=B C=C D=A D$, and one of its interior angles is 90°.
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\mathrm{AO}=\mathrm{CO}$ (Diagonals bisect each other)
$\mathrm{OB}=\mathrm{OD}$ (Diagonals bisect each other)
$\angle A O B=\angle C O D$ (Vertically opposite angles)
$\square \triangle \mathrm{AOB}=\square \Delta \mathrm{COD}($ SAS congruence rule $)$
$\square A B=C D(B y C P C T) \ldots$ (1)
And, $\square O A B=\square O C D(B y C P C T)$
However, these are alternate interior angles for line AB and CD and alternate interior angles are equal to each other only when the two lines are parallel.
$\square A B \| C D \ldots$ (2)
From equations (1) and (2), we obtain
$A B C D$ is a parallelogram.
In $\triangle \mathrm{AOD}$ and $\triangle \mathrm{COD}$,
$\mathrm{AO}=\mathrm{CO}$ (diagonals bisect each other)
$\square A O D=\square C O D$ (Given that each is 90°)
OD = OD (Common)
$\square \triangle A O D \square \triangle C O D(S A S$ congruence rule)
$\square A D=D C \ldots(3)$
However, $\mathrm{AD}=\mathrm{BC}$ and $\mathrm{AB}=\mathrm{CD}$ (Opposite sides of parallelogram ABCD)
$\square A B=B C=C D=D A$
Therefore, all the sides of quadrilateral ABCD are equal to each other.
In $\triangle A D C$ and $\triangle B C D$, ,
$\mathrm{AD}=\mathrm{BC}$ (Already proved)
$\mathrm{AC}=\mathrm{BD}$ (Given)
DC = CD (Common)
$\square \triangle \mathrm{ADC} \square \Delta \mathrm{BCD}$ (SSS Congruence rule)
$\square \square \mathrm{ADC}=\square \mathrm{BCD}(\mathrm{ByCPCT})$
However, $\square A D C+\square B C D=180^{\circ}$ (Co-interior angles)
$\square \square A D C+\square A D C=180^{\circ}$
$\square 2 \square A D C=180^{\circ}$
$\square \square A D C=90^{\circ}$
One of the interior angles of quadrilateral ABCD is a right angle.
Thus, we have obtained that ABCD is a parallelogram, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$ and one of its interior
angles is 90°.Therefore, ABCD is a square.
Page : 146 , Block Name : Exercise 8.1

Q6 Diagonal AC of a parallelogram ABCD bisects $\angle \mathrm{A}$

Show that
(i) it bisects $\angle \mathrm{C}$ also,
(ii) ABCD is a rhombus.

Answer. (i) $A B C D$ is a parallelogram.
$\square D A C=\square B C A$ (Alternate interior angles)
And, $\square B A C=\square D C A$ (Alternate interior angles)
However, it is given that AC bisects $\square \mathrm{A}$.
$\square \square D A C=\square B A C \ldots(3)$
From equations (1), (2), and (3), we obtain
$\square \mathrm{DAC}=\square B C A=\square B A C=\square D C A \ldots$ (4)
$\square \square D C A=\square B C A$
Hence, AC bisects $\square \mathrm{C}$.
(ii) From equation (4) , we obtain
$\square D A C=\square D C A$
$\square D A=D C$ (Side opposite to equal angles are equal)
However, $\mathrm{DA}=\mathrm{BC}$ and $\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram)
$\square A B=B C=C D=D A$
Hence, ABCD is a rhombus.

Page : 146 , Block Name : Exercise 8.1

Q7 ABCD is a rhombus. Show that diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$ and diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Answer.

Let us join AC.

In $\triangle \mathrm{ABC}$,
$B C=A B$ (Sides of a rhombus are equal to each other)
$\angle 1=\angle 2$ (Angles opposite to equal sides of a triangle are equal)
However, $\angle 1=\angle 3$ (Alternate interior angles for parallel lines $A B$ and $C D$)
$\angle 2=\angle 3$
Therefore, AC bisects $\angle \mathrm{C}$.
Also, $\square 2=\square 4$ (Alternate interior angles for $\|$ lines $B C$ and $D A$
$\square \square 1=\square 4$
Therefore, $A C$ bisects $\square A$.
Similarly, it can be proved that BD bisects \backslash angl B and $\square D$ as well.

Page : 146 , Block Name : Exercise 8.1
Q8 ABCD is a rectangle in which diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that:
(i) $A B C D$ is a square
(ii) diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Answer.

(i) It is given that $A B C D$ is a rectangle.
$\angle A=\angle C$
$\Rightarrow \frac{1}{2} \angle A=\frac{1}{2} \angle C \quad$ (AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$)
$\Rightarrow \angle D A C=\angle D C A$
$\mathrm{CD}=\mathrm{DA}$ (Sides opposite to equal angles are also equal)
However, $\mathrm{DA}=\mathrm{BC}$ and $\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a rectangle are equal)
$\square A B=B C=C D=D A$
ABCD is a rectangle and all of its sides are equal.
Hence, ABCD is a square.
(ii) Let us join BD.

In $\triangle B C D$,
$\mathrm{BC}=\mathrm{CD}$ (Sides of a square are equal to each other.)
$\angle C D B=\angle C B D$ (Angles opposite to equal sides are equal)
However, $\angle \mathrm{CDB}=\angle \mathrm{ABD}$ (Alternate interior angles for $\mathrm{AB} \| \mathrm{CD}$)
$\triangle C B D=\triangle A B D$
$B D$ bisects $\angle B$
Also, $\triangle \mathrm{CBD}=\triangle \mathrm{ADB}$ (Alternate interior angles for BC II AD)
$\angle C D B=\angle A B D$
$B D$ bisects $\angle D$

Page : 146 , Block Name : Exercise 8.1
Q9 In parallelogram ABCD , two points P and Q are taken on diagonal BD such that $\mathrm{DP}=\mathrm{BQ}$

Show that:
(i) $\Delta \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$
(iv) $\mathrm{AQ}=\mathrm{CP}$
(v) APCQ is a parallelogram.

Answer. (i) In $\triangle A P D$ and $\triangle C Q B$,
$\square A D P=\square C B Q$ (Alternate interior angles for BC II AD)
$\mathrm{AD}=\mathrm{CB}$ (Opposite sides of a parallelogram ABCD)
$\mathrm{DP}=\mathrm{BQ}$ (Given)
$\square \triangle A P D \square \Delta C Q B$ (Using SAS Congruence rule)
(ii) As we have observed that $\triangle \mathrm{APD} \square \Delta \mathrm{CQB}$,
$\square A P=C Q(C P C T)$
(iii) In $\triangle \mathrm{AQB}$ and $\triangle \mathrm{CPD}$
$\square A B Q=\square C D P($ Alternate interior angles for $A B \| C D)$
$\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram ABCD)
$\mathrm{BQ}=\mathrm{DP}$ (Given)
$\square \triangle A Q B \square \Delta C P D(U$ sing SAS congruence rule $)$
(iv) As we had observed that $\triangle \mathrm{AQB} \square \Delta \mathrm{CPD}$,
$\square A Q=C P(C P C T)$
(v) From the result obtained in (ii) and (iv),
$A Q=C P$ and $A P=C Q$
Since opposite sides in quadrilateral APCQ are equal to each other, APCQ is a parallelogram.

Page : 147 , Block Name : Exercise 8.1

Q10 ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD

Show that
(i) $\Delta \mathrm{APB} \cong \triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$

Answer. (i) $\triangle \mathrm{APB}$ and $\triangle \mathrm{CQD}$
$\square A P B=\square C Q D\left(E a c h 90^{\circ}\right)$
$\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram ABCD)
$\square A B P=\square C D Q$ (Alternate interior angles for AB II CD)
$\square \triangle \mathrm{APB} \square \Delta \mathrm{CQD}$ (By AAS congruency)
(ii) By using the above result
$\triangle A P B \square \triangle C Q D$, we obtain $\mathrm{AP}=\mathrm{CQ}(\mathrm{By} \mathrm{CPCT})$

Page : 147 , Block Name : Exercise 8.1
Q11 In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F respectively

Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{AD}=\mathrm{CF}$
(iv) quadrilateral ACFD is a parallelogram
(v) $\mathrm{AC}=\mathrm{DF}$
(vi) $\Delta \mathrm{ABC} \cong \Delta \mathrm{DEF}$.

Answer. It is given that $\mathrm{AB}=\mathrm{DE}$ and AB II DE .
If two opposite sides of a quadrilateral are equal and parallel to each other, then it will be a
parallelogram.
Therefore, quadrilateral ABED is a parallelogram.
(ii) Again, $\mathrm{BC}=\mathrm{EF}$ and BC II EF

Therefore, quadrilateral BCEF is a parallelogram.
(iii) As we had observed that ABED and BEFC are parallelograms, therefore
$\mathrm{AD}=\mathrm{BE}$ and AD II BE
(Opposite sides of a parallelogram are equal and parallel)
And, BE = CF and BE II CF
(Opposite sides of a parallelogram are equal and parallel)
$\square A D=C F$ and $A D \| C F$
(iv) As we had observed that one pair of opposite sides (AD and CF) of a quadrilateral ACFD are equal and parallel to each other, therefore , it is a parallelogram.
(v) As ACFD is a parallelogram, therefore, the pair of opposite sides will be equal and parallel to each other.
$\square A C \| D F$ and $\mathrm{AC}=\mathrm{DF}$
(vi) $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,
$\mathrm{AB}=\mathrm{DE}$ (Given)
$\mathrm{BC}=\mathrm{EF}$ (Given)
$\mathrm{AC}=\mathrm{DF}$ (ACFD is parallelogram)
$\square \triangle A B C \square \Delta D E F$ (By SSS Congruence Rule)

Page : 147 , Block Name : Exercise 8.1
Q12 $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$

Show that
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) diagonal $\mathrm{AC}=$ diagonal BD
[Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Answer. Let us extend AB. Then, draw a line through C, which is parallel to AD, intersecting AE at point E. It is clear that AECD is a parallelogram.
(i) $\mathrm{AD}=\mathrm{CE}$ (Opposite sides of a parallelogram AECD)

However, $\mathrm{AD}=\mathrm{BC}$ (Given)
Therefore, $\mathrm{BC}=\mathrm{CE}$
$\square C E B=\square C B E$ (Angle opposite to equal sides are also equal)

Consider parallel lines AD and CE . AE is the transversal line for them.
$\square A+\square C E B=180^{\circ}$ (Angles on the same side of transversal)
$\square A+\square C B E=180^{\circ}$ (Using the relation $\left.\square C E B=\square C B E\right) \ldots$ (1)
However, $\square B+\square C B E=180^{\circ}$ (Linear pair angles) \ldots. (2)
From equations (1) and (2), we obtain
$\square A=\square B$
(ii) AB II CD
$\square A+\square D=180^{\circ}$ (Angles on the same side are transversal)
Also, $\square C+\square B=180^{\circ}$ (Angles on the same side are transversal)
$\square \square A+\square D=\square C+\square B$
However, $\square A=\square B$ [Using the result obtained in (i)]
$\square \square C=\square D$
(iii) In $\triangle A B C$ and $\triangle B A D$, ,
$\mathrm{AB}=\mathrm{BA}$ (Common side)
$\mathrm{BC}=\mathrm{AD}$ (Given)
$\square B=\square A$ (Proved before)
$\square \triangle A B C \square \Delta B A D$ (SAS congruence rule)
(iv) We had observed that, $\triangle \mathrm{ABC} \square \triangle \mathrm{BAD}$
$\square \mathrm{AC}=\mathrm{BD}(\mathrm{ByCPCT})$

Page : 147 , Block Name : Exercise 8.1

Exercise 8.2

Q1 $A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$

AC is a diagonal. Show that :
(i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\$ \frac{1}{2} \$ \mathrm{AC}$
(ii) $P Q=S R$
(iii) PQRS is a parallelogram.

Answer. (i) In $\triangle A D C, S$ and R are the mid-points of sides $A D$ and $C D$ respectively.
In a triangle, the line segment joining the mid-points of any two sides of the triangle is parallel to the 3 rd side and is half of it.
$\square \mathrm{SR} \| A C$ and $S R=\frac{1}{2} A C \ldots$ (1)
(ii) In $\triangle \mathrm{ABC} . \mathrm{P}$ and Q are the mid-points of sides AB and BC respectively. Therefore, by using mid-point theoram,
$\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC} \ldots$ (2)
Using equations (1) and (2) , we obtain
PQ II SR and PQ = SR (3)
$\square \mathrm{PQ}=\mathrm{SR}$
(iii) From equation (3), we obtained

PQ II SR and PQ = SR
Clearly, one pair of opposite sides of quadrilateral PQRS is parallel and equal.
Hence, PQRS is a parallelogram.

Page : 150 , Block Name : Exercise 8.2

Q 2 ABCD is a rhombus and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA respectively. Show that the quadrilateral PQRS is a rectangle.

Answer.

In $\triangle A B C, P$ and Q are the mid-points of sides $A B$ and $B C$ respectively.
$\square \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$ (Using mid-point theorem) \ldots (1)
In $\triangle \mathrm{ADC}$,
R and S are the mid-points of sides $C D$ and $A D$ respectively.
$\square \mathrm{RS} \| \mathrm{AC}$ and $\mathrm{RS}=\frac{1}{2} \mathrm{AC}$ (Using mid-point theorem) \ldots (2)
From equations (1) and (2) , we obtain
PQ II RS and PQ = RS
Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.
Let the diagonals of rhombus ABCD intersect each other at point O .
In quadrilateral OMPQ,
MQ II ON ($(\because \mathrm{PQ} \| \mathrm{AC})$
QN II OM ($(\because \mathrm{QR} \| \mathrm{BD})$
Therefore, OMQN is a parallelogram.
$\square \square M Q N=\square N O M$
$\square \square P Q R=\square N O M$
However, $\square \mathrm{NOM}=90^{\circ}$ (Diagonals of a rhombus are perpendicular to each other).
$\square \square P Q R=90^{\circ}$
Clearly, PQRS is a parallelogram having one of its interior angles as 90°.
Hence, PQRS is a rectangle.

Page : 150 , Block Name : Exercise 8.2
Q3 ABCD is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rhombus.

Answer.

Let us join AC and BD .
In $\triangle \mathrm{ABC}$,
P and Q are the mid-points of $A B$ and $B C$ respectively.
$\square \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}($ Mid-point theorem $) \ldots$ (1)
Similarly in $\triangle \mathrm{ADC}$,
$\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}($ Mid-point theorem $) \ldots($
Clearly, PQ II SR and PQ = SR
Since in quadrilateral PQRS, one pair of opposite sides is equal and parallel to each other, it is a parallelogram.
$\square \mathrm{PS} \| \mathrm{QR}$ and $\mathrm{PS}=\mathrm{QR}$ (Opposite sides of parallelogram)..
In $\triangle B C D, \mathrm{Q}$ and R are the mid-points of side BC and CD respectively.
$\square \mathrm{QR} \| \mathrm{BD}$ and $\mathrm{QR}=\frac{1}{2} \mathrm{BD}$ (Mid-point theoram)
However,the diagonals of a rectangle are equal.
$\square A C=B D$
By using equation (1), (2), (3), (4), and (5), we obtain
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$
Therefore, PQRS is a rhombus.

Page : 150, Block Name : Exercise 8.2

Q4 ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}, \mathrm{BD}$ is a diagonal and E is the mid-point of AD . A line is drawn through E parallel to $A B$ intersecting $B C$ at F

Show that F is the mid-point of BC.

Answer. Let EF intersect DB at G.

By converse of mid-point theoram, we know that a line drawn through the mid-point of any side of a triangle and parallel to another side, bisects the third side.
In $\triangle \mathrm{ABD}$,
EF II AB and E is the mid-point of AD .
Therefore, G will be the mid-point of $D B$.
As EF II AB and AB II CD ,
$\square \mathrm{EF} \| \mathrm{CD}$ (Two lines parallel to the same line are parallel to each other.)
In $\triangle B C D$, GF II CD and G is the mid-point of line BD . Therefore, by using converse of mid-point theoram, F is the mid-point of BC .

Page : 150, Block Name : Exercise 8.2

Q5 In a parallelogram $\mathrm{ABCD}, \mathrm{E}$ and F are the mid-points of sides AB and CD respectively

Show that the line segments AF and EC trisect the diagonal BD .

Answer. ABCD is a parallelogram.
$\square A B \| C D$
And hence, AE II FC
Again, $\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram ABCD)
$\frac{1}{2} A B=\frac{1}{2} C D$
$\mathrm{AE}=\mathrm{FC}(\mathrm{E}$ and F are mid-points of side AB and CD$)$
In quadrilateral AECF, one pair of opposite sides (AE and CF) is parallel and equal to each other.
Therefore, AECF is a parallelogram.
\square AF \|EC (Opposite sides of a parallelogram)
In $\triangle \mathrm{DQC}, \mathrm{F}$ is the mid-point of side DC and FP II CQ (as AF II EC). Therefore, by using converse of mid-point theoram , it can be said that P is the mid-point of $D Q$.
DP=PQ
Similarly, in $\triangle \mathrm{APB}$, E is the mid-point of side AB and EQ II AP (as AF II EC).
Therefore, by using converse of mid-point theoram, it can be said that Q is the mid-point of PB .
$\mathrm{PQ}=\mathrm{QB}$
From equations (1) and (2),
$\mathrm{DP}=\mathrm{PQ}=\mathrm{BQ}$
Hence, the line segments AF and EC trisect the diagonal BD.
Page : 151, Block Name : Exercise 8.2
Q6 Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Answer.

Let ABCD is a quadrilateral in which $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S are the mid-points of sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$, and DA respectively. JOin PQ, QR, RS, SP , and BD .
In $\triangle A B D$, S and P are the mid-points Of AD and AB respectively. Therefore, by using mid-point theorem, it can be said that
$\mathrm{SP} \| \mathrm{BD}$ and $\mathrm{SP}=\frac{1}{2} \mathrm{BD} \ldots$ (1)
Similarly in $\triangle B C D$,
$\mathrm{QR} \| \mathrm{BD}$ and $\mathrm{QR}=\frac{1}{2} \mathrm{BD} \ldots(1)$
From equations (1) and (2), we obtain
$\mathrm{SP} \| \mathrm{QR}$ and $S P=Q R$
In quadrilateral SPQR, one pair of opposite sides is equal and parallel to each other. Therefore, SPQR is a parallelogram.
We know that diagonals Of a parallelogram bisect each other.
Hence, PR and QS bisect each other.

Page : 151, Block Name : Exercise 8.2
Q7 $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to BC intersects AC at D . Show that
(i) D is the mid-point of AC
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$

Answer.

(i) In $\triangle \mathrm{ABC}$,

It is given that M is the mid-point of $A B$ and $M D$ II $B C$.
Therefore, D is the mid-point of AC . (Converse of mid-point theorem)
(ii) As DM II CB and AC is a transversal line for them, therefore,
$\angle M D C+\angle D C B=180^{\circ}(C o-$ interior angles $)$
$\square M D C+90^{\circ}=180^{\circ}$
$\square M D C=90^{\circ}$
$\square M D \square A C$
(iii) Join MC.

In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{CMD}$,
$\mathrm{AD}=\mathrm{CD}(\mathrm{D}$ is the mid-point Of side AC$)$
$\angle A D M=\angle C D M\left(E a c h 90^{\circ}\right)$
$\mathrm{DM}=\mathrm{DM}$ (Common)
$\square \triangle A M D=\square \Delta C M D$ (By SAS Congruence Rule)
Therefore, $\mathrm{AM}=\mathrm{CM}$ (By CPCT)
However, $\mathrm{AM}=\frac{1}{2}{ }_{A B}$ (M is the mid-point of AB)
Therefore, it can be said that
$\mathrm{CM}=\mathrm{AM}=\frac{1}{2} \mathrm{AB}$
Page : 151, Block Name : Exercise 8.2

