NCERT

SOLUTIONS

CLASS - 9th

aglasem.com

Class: 9th

Subject : Maths
Chapter: 6
Chapter Name : LINES AND ANGLES

Exercise 6.1

Q1 In Fig. 6.13, lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$, find $\angle \mathrm{BOE}$ and reflex $\angle \mathrm{COE}$.

Fig. 6.13

Answer. AB is a straight line, rays OC and OE stand on it.
$\therefore \angle \mathrm{AOC}+\angle \mathrm{COE}+\angle \mathrm{BOE}=180^{\circ}$
$\Rightarrow(\angle \mathrm{AOC}+\angle \mathrm{BOE})+\angle \mathrm{COE}=180^{\circ}$
$\Rightarrow 70^{\circ}+\angle \mathrm{COE}=180^{\circ}$
$\Rightarrow \angle \mathrm{COE}=180^{\circ}-70^{\circ}=110^{\circ}$
Reflex $\angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}$
CD is a straight line. rays OE and OB stand on it.
$\therefore \angle \mathrm{COE}+\angle \mathrm{BOE}+\angle \mathrm{BOD}=180^{\circ}$
$\Rightarrow 110^{\circ}+\angle \mathrm{BOE}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{BOE}=180^{\circ}-150^{\circ}=30^{\circ}$

Page : 96, Block Name : Exercise 6.1

Q2 In Fig. lines XY and MN intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Answer. Let the common ratio between a and b be x.
$\mathrm{a}=2 \mathrm{x}$, and $\mathrm{b}=3 \mathrm{x}$
XY is a straight line, rays OM and OP stand on it.
$\therefore \angle \mathrm{XOM}+\angle \mathrm{MOP}+\angle \mathrm{POY}=180^{\circ}$
$b+a+\angle \mathrm{POY}=180^{\circ}$
$3 x+2 x+90^{\circ}=180^{\circ}$
$5 x=90^{\circ}$
$x=18^{\circ}$
$a=2 x=2 \times 18=36^{\circ}$
$b=3 x=3 \times 18=54^{\circ}$
MN is a straight line. Ray OX stands on it.
$\therefore b+c=180^{\circ}$ (Linear Pair)
$54^{\circ}+c=180^{\circ}$
$c=180^{\circ}-54^{\circ}=126^{\circ}$
$\therefore c=126^{\circ}$

Page : 97, Block Name : Exercise 6.1

Q3. In Fig. $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$

Answer. In the given figure, ST isa straight line and ray QP stands on it.

$$
\begin{aligned}
& \therefore \angle \mathrm{PQS}+\angle \mathrm{PQR}=180^{\circ}(\text { Linear Pair }) \\
& \angle \mathrm{PQR}=180^{\circ}-\angle \mathrm{PQS}(1) \\
& \angle \mathrm{PRT}+\angle \mathrm{PRQ}=180^{\circ}(\text { Linear Pair }) \\
& \angle \mathrm{PRQ}=180^{\circ}-\angle \mathrm{PRT}(2) \\
& \text { It is given that } \angle \mathrm{PQR}=\angle \mathrm{PRQ} . \\
& \text { Equating equations }(1) \text { and }(2), \text { we obtain } \\
& 180^{\circ}-\angle \mathrm{PQS}=180^{\circ}-\angle \mathrm{PRT} \\
& \angle \mathrm{PQS}=\angle \mathrm{PRT}
\end{aligned}
$$

Page : 97 , Block Name : Exercise 6.1

Q4 In Fig. if $x+y=w+z$, then prove that AOB is a line.

Answer.
It can be observed that,
$x+y+z+w=360^{\circ}$ (Complete angle)
It is given that,
$x+y=z+w$
$\therefore x+y+x+y=360^{\circ}$
$2(x+y)=360^{\circ}$
$x+y=180^{\circ}$
Since x and y form a linear pair, AOB is a line.

Page : 97 , Block Name : Exercise 6.1

Q5 In Fig. POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle \mathrm{ROS}=1 / 2(\angle \mathrm{QOS}-\angle \mathrm{POS})$.

Answer. It is given that $\mathrm{OR} \perp \mathrm{PQ}$
$\square \square \mathrm{POR}=90^{\circ}$
$\square \square \mathrm{POS}+\square \mathrm{SOR}=90^{\circ}$
$\square R O S=90^{\circ}-\square P O S \ldots$ (1)
$\square Q O R=90^{\circ}(A s O R \square P Q)$
On adding equations (1) and (2), we obtain
$2 \square \mathrm{ROS}=\square \mathrm{QOS}-\square \mathrm{POS}$
$\square \mathrm{ROS}=\frac{1}{2}(\square \mathrm{QOS}-\square \mathrm{POS})$

Page : 97 , Block Name : Exercise 6.1

Q6 It is given that $\angle \mathrm{XYZ}=64^{\circ}$ and XY is produced to point P . Draw a figure from the given information. If ray YQ bisects $\angle \mathrm{ZYP}$, find $\angle \mathrm{XYQ}$ and reflex $\angle \mathrm{QYP}$.

Answer.

It is given that line YQ bisects $\square \mathrm{PYZ}$
Hence, $\square Q Y P=\square Z Y Q$
It can be observed that PX is a line. Rays YQ and YZ stand on it.
$\square \square \times Y Z+\square Z Y Q+\square Q Y P=180^{\circ}$
$\square 64^{\circ}+2 \square Q Y P=180^{\circ}$
$\square 2 \square Q Y P=180^{\circ}-64^{\circ}=116^{\circ}$
$\square Q Y P=58^{\circ}$
Also $\square Z Y Q=\square Q Y P=58^{\circ}$
Reflex $\square Q Y P=360^{\circ}-58^{\circ}=302^{\circ}$
$\square \times Y Q=\square X Y Z+\square Z Y Q$
$=64^{\circ}+58^{\circ}=122^{\circ}$

Page : 97 , Block Name : Exercise 6.1

Exercise 6.2

Q1 In Fig. 6.28, find the values of x and y and then show that $\mathrm{AB} \| \mathrm{CD}$.

Fig. 6.28

Answer. It can be observed that, $50^{\circ}+x=180^{\circ}$ (Linear pair)
$x=130^{\circ} \ldots$ (1)
Also, $y=130^{\circ}$ (Vertically opposite angles)
As x and y are alternate interior angles for lines AB and CD and also measures of these angles are equal to each other, therefore, line AB II CO.

Page : 103 , Block Name : Exercise 6.2

Q2 In Fig. 6.29, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

Fig. 6.29

Answer. It is given that AB II CD and CD II EF
$\square A B\|C D\| E F$ (Lines parallel to the same line are parallel to each other)
It can be observed that
$\mathrm{x}=\mathrm{z}$ (Alternate interior angles)
It is given that $\mathrm{y}: \mathrm{z}=3: 7$
Let the common ratio between y and Z be a.
$\square y=3 a$ and $z=7 a$
Also, $x+y=180^{\circ}$ (Co-interior angles on the same side of the transversal)

```
\(z+y=180^{\circ}\) [ Using equation (1)]
\(7 a+3 a=180^{\circ}\)
```

$10 a=180^{\circ}$
$a=180$
$\square x=7 a=7 \times 18^{\circ}=126^{\circ}$

Page : 104 , Block Name : Exercise 6.2

Q3 In Fig. below, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Answer. It is given that
AB || CD
EF $\square \mathrm{CD}$
$\square \mathrm{GED}=126^{\circ}$
$\square \square G E F+\square F E D=126^{\circ}$
$\square \square G E F+90^{\circ}=126^{\circ}$
$\square \square G E F=36^{\circ}$
$\square A G E$ and $\square G E D$ are alternate interior angles.
$\square \square A G E=\square G E D=126^{\circ}$
However, $\square A G E+\square F G E=180^{\circ}$ (Linear pair)
$\square 126^{\circ}+\square F G E=180^{\circ}$
$\square \square \mathrm{FGE}=180^{\circ}-126^{\circ}=54^{\circ}$
$\square \square \mathrm{AGE}=126^{\circ}, \square \mathrm{GEF}=36^{\circ}, \square \mathrm{FGE}=54^{\circ}$

Page : 104 , Block Name : Exercise 6.2

Q4 In Fig. below, if $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.
[Hint : Draw a line parallel to ST through point R.]

Answer.

Let us draw a line XY parallel to ST and passing through point R.
$\square P Q R+\square Q R X=180^{\circ}$ (Co-interior angles on the same side of transversal QR)
$\square 110^{\circ}+\square Q R X=180^{\circ}$
$\square \square Q R X=70^{\circ}$
Also
$\square R S T+\square S R Y=180^{\circ}$ (Co-interior angles on the same side of transversal SR)
$130^{\circ}+\square S R Y=180^{\circ}$
$\square S R Y=50^{\circ}$
XY is a straight line. RQ and RS stand on it.
$\square \square Q R X+\square Q R S+\square S R Y=180^{\circ}$
$70^{\circ}+\square Q R S+50^{\circ}=180^{\circ}$
$\square Q R S=180^{\circ}-120^{\circ}=60^{\circ}$

Page : 104 , Block Name : Exercise 6.2

Q5 In Fig. 6.32 , if $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y .

Fig. 6.32

Answer. $\square A P R=\square P R D$ (Alternate interior angles)
$50^{\circ}+y=127^{\circ}$
$y=127^{\circ}-50^{\circ}$
$y=77^{\circ}$
Also, $\square A P Q=\square P Q R$ (Alternate interior angles)

$$
\begin{aligned}
& 50^{\circ}=x \\
& \square x=50^{\circ} \text { and } y=77^{\circ}
\end{aligned}
$$

Page : 104 , Block Name : Exercise 6.2

Q6 In Fig. 6.33 , PQ and RS are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along CD. Prove that $A B \| C D$.

Fig. 6.33

Answer.

Let us draw $\mathrm{BM} \square \mathrm{PQ}$ and $\mathrm{CN} \square \mathrm{RS}$
As PO || RS
Therefore, BM \| CN
Thus, BM and CN are two parallel lines and a transversal line 3C cuts them at and C respectively.

```
\square \square 2 = \square 3 ~ ( A l t e r n a t e ~ i n t e r i o r ~ a n g l e s )
```

However, $\square 1=\square 2$ and $\square 3=\square 4$ (By laws of reflection)
$\square \square 1=\square 2=\square 3=\square 4$
Also, $\square 1+\square 2=\square 3+\square 4$
$\square A B C=\square D C B$
However, these are alternate interior angles.
AB || CD

Page : 104 , Block Name : Exercise 6.2

Exercise 6.3

Q1 In Fig. below, sides QP and RQ of $\Delta \mathrm{PQR}$ are produced to points S and T respectively. If $\angle \mathrm{SPR}=135^{\circ}$ and $\angle \mathrm{PQT}=110^{\circ}$, find $\angle \mathrm{PRQ}$.

Answer. It is given that,
$\square S P R=135^{\circ}$ and $\square P Q T=110^{\circ}$
$\square S P R+\square Q P R=180^{\circ}$ (Linear pair angles)
$\square 135^{\circ}+\square Q P R=180^{\circ}$
$\square \square Q P R=45^{\circ}$
Also, $\square P Q T+\square P Q R=180^{\circ}$ (Linear pair angles)
$\square 110^{\circ}+\square P Q R=180^{\circ}$$P Q R=70^{\circ}$
As the sum Of all interior angles of a triangle is 180°, therefore, for $\triangle \mathrm{PQR}$
$\square Q P R+\square P Q R+\square P R Q=180^{\circ}$
$\square 45^{\circ}+70^{\circ}+\square P R Q=180^{\circ}$
$\square \square P R Q=180^{\circ}-115^{\circ}$
$\square \square P R Q=65^{\circ}$
Page : 107 , Block Name : Exercise 6.3

Q2 In Fig. 6.40, $\angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ}$. If YO and ZO are the bisectors of $\angle \mathrm{XYZ}$ and \angle XZY respectively of $\Delta \mathrm{XYZ}$, find $\angle \mathrm{OZY}$ and $\angle \mathrm{YOZ}$.

Fig. 6.40

Answer. As the sum of all interior angles of a triangle is 180°, therefore, for $\Delta X Y Z$,
$\square X+\square X Y Z+\square \times Z Y=180^{\circ}$
$62^{\circ}+54^{\circ}+\square X Z Y=180^{\circ}$
$\square \times Z Y=180^{\circ}-116^{\circ}$
$\square X Z Y=64^{\circ}$
$\square O Y Z=\frac{64}{2}=32^{\circ}$ (OZ iS the angle bisector of $\Delta X Y Z$)
Similarly, $\square O Y Z=\frac{54}{2}=27^{\circ}$
using angle sum property for $\triangle O Y Z$, we obtain
$\square O Y Z+\square Y O Z+\square O Z Y=180^{\circ}$
$27^{\circ}+\square Y O Z+32^{\circ}=180^{\circ}$
$\square Y O Z=180^{\circ}-59^{\circ}$
$\square Y O Z=121^{\circ}$

Page : 107, Block Name : Exercise 6.3

Q3 In Fig. 6.41, if $\mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ}$ and $\angle \mathrm{CDE}=53^{\circ}$, find $\angle \mathrm{DCE}$.

Fig. 6.41

Answer. AB II DE and AE is a transversal.
$\square B A C=\square C E D$ (Alternate interior angles)
$\square \square C E D=35^{\circ}$
In $\triangle C D E$, (Angle sum property of a triangle)
$\square C D E+\square C E D+\square D C E=180^{\circ}$
$53^{\circ}+35^{\circ}+\square D C E=180^{\circ}$
$\square D C E=180^{\circ}-88^{\circ}$
$\square D C E=92^{\circ}$

Page : 107, Block Name : Exercise 6.3

Q4 In Fig. 6.42, if lines PQ and RS intersect at point T, such that $\angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=$ 95° and $\angle \mathrm{TSQ}=75^{\circ}$, find $\angle \mathrm{SQT}$.

Answer. Using angle sum property for $\triangle \mathrm{PRT}$, we obtain
$\square P R T+\square R P T+\square P T R=180^{\circ}$
$40^{\circ}+95^{\circ}+\square P T R=180^{\circ}$
$\square \mathrm{PTR}=180^{\circ}-135^{\circ}$
$\square \mathrm{PTR}=45^{\circ}$
$\square S T Q=\square P T R=45^{\circ}$ (Vertically opposite angles)
$\square S T Q=45^{\circ}$
By using angle sum property for $\Delta S T Q$, we obtain
$\square S T Q+\square S Q T+D Q S T=180^{\circ}$
$45^{\circ}+\square S Q T+75^{\circ}=180^{\circ}$
$\square S Q T=180^{\circ}-120^{\circ}$
$\square S Q T=60^{\circ}$

Page : 107, Block Name : Exercise 6.3

Q5 In Fig. 6.43, if $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$, then find the values of x and y.

Answer. It is given that PQ II SR and QR is a transversal line.
$\square P Q R=\square Q R T$ (Alternate interior angles)

$$
x+28^{\circ}=65^{\circ}
$$

$x=65^{\circ}-28^{\circ}$
$x=37^{\circ}$
By using the angle sum property for $\triangle \mathrm{SPQ}$, we obtain
$\square \mathrm{SPQ}+x+y=180^{\circ}$
$90^{\circ}+37^{\circ}+y=180^{\circ}$
$y=180^{\circ}-127^{\circ}$
$y=53^{\circ}$
$\therefore x=37^{\circ}$ and $y=53^{\circ}$

Page : 108 , Block Name : Exercise 6.3

Q6 In Fig. below, the side QR of $\Delta \mathrm{PQR}$ is produced to a point S . If the bisectors of \angle PQR and $\angle \mathrm{PRS}$ meet at point T , then prove that $\angle \mathrm{QTR}=1 / 2 \angle \mathrm{QPR}$.

Answer.

In $\triangle Q T R, \square T R S$ is an exterior angle.
$\therefore \square Q T R+\square T Q R=\square T R S$
$\square Q T R=\square T R S-\square T Q R(1)$
For $\triangle \mathrm{PQR}, \square \mathrm{PRS}$ is an external angle.
$\therefore \square Q P R+\square P Q R=\square P R S$
$\square Q P R+2 \square T Q R=2 \square T R S(A s Q T$ and $R T$ are angle bisectors)
$\square Q P R=2(\square T R S-\square T Q R)$
$\square Q P R=2 \square Q T R[B y$ using equation (1)]
$\square \mathrm{QTR}=\frac{1}{2} \square \mathrm{QPR}$

Page : 108 , Block Name : Exercise 6.3

