NCERT

SOLUTIONS

CLASS - 9th

aglasem.com

Class : 9th
Subject: Maths
Chapter: 1
Chapter Name : Number Systems

Exercise 1.1

Q1 Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers and q $\neq 0$?

Answer. Zero is a rational number as it can be represented as $\frac{0}{1}$ or $\frac{0}{2}$ or $\frac{0}{3}$ etc.
Page : 5, Block Name : Exercise 1.1
Q2 Find six rational numbers between 3 and 4 .
Answer. There are infinite rational numbers in between 3 and 4.
3 and 4 can be represented as $\frac{24}{8}$ and $\frac{32}{8}$
Therefore, rational numbers between 3 and 4 are
$\frac{25}{8}, \frac{26}{8}, \frac{27}{8}, \frac{28}{8}, \frac{29}{8}, \frac{30}{8}$

Page : 5, Block Name : Exercise 1.1

Q3 Find five rational numbers between 35 and 45 .

Answer.
There are infinite rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$
$\frac{3}{5}=\frac{3 \times 6}{5 \times 6}=\frac{18}{30}$
$\frac{4}{5}=\frac{4 \times 6}{5 \times 6}=\frac{24}{30}$
Therefore, rational numbers between $\frac{3}{5}$ and $\frac{4}{5}$.
$\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}$

Page : 5, Block Name : Exercise 1.1

Q4 State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(ii) Every integer is a whole number.
(iii) Every rational number is a whole number

Answer. (i) True; since the collection of whole numbers contains all natural numbers.
(ii) False; as integers may be negative but whole numbers are positive. For example: -3 is an integer but not a whole number.
(iii) False; as rational numbers may be fractional but whole numbers may not be. For Example $: \frac{1}{5}$ is rational number but not a whole number.

Page : 5, Block Name : Exercise 1.1

Exercise 1.2

Q1 State whether the following statements are true or false. Justify your answers.
(i) Every irrational number is a real number.
(ii) Every point on the number line is of the form \sqrt{m}, where m is a natural number.
(iii) Every real number is an irrational number.

Answer. (i) True; since the collection of real numbers is made up of rational and irrational numbers.
(ii) False; as negative numbers cannot be expressed as the square root of any other number.
(iii) False; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.

Page : 8, Block Name : Exercise 1.2

Q2 Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

Answer. If numbers such as $\sqrt{4}=2, \sqrt{9}=3$ are considered, Then here, 2 and 3 are rational numbers. Thus, the square roots of all positive integers are not irrational.

Page : 8, Block Name : Exercise 1.2
Q3 Show how $\sqrt{5}$ can be represented on the number line.
Answer.
We know that, $\sqrt{4}=2$
And, $\sqrt{5}=\sqrt{(2)^{2}+(1)^{2}}$

Mark a point 'A' representing 2 on number line. Now, construct AB Of unit length perpendicular to OA . Then, taking O as centre and OB as radius, draw an arc intersecting number line at C .
C is representing $\sqrt{5}$.
Page : 8, Block Name : Exercise 1.2

Exercise 1.3

Q1 Write the following in decimal form and say what kind of decimal expansion each has :
(i) ${ }^{\frac{36}{100}}(i i)^{\frac{1}{11}}(i i i)^{4 \frac{1}{8}}$
$(\mathrm{iv})^{\frac{3}{13}}(v)^{\frac{2}{11}}(v i)^{\frac{329}{400}}$

Answer.
$\frac{1}{11}=0.090909 \ldots \ldots=0 . \overline{09}$
Non-terminating repeating
(iii) ${ }^{4} \frac{1}{8}=\frac{33}{8}=4.125$

Terminating
$\frac{3}{13}=0.230769230769 \ldots=0.230769$
(iv) Non-terminating repeating
(v) $\frac{2}{11}=0.18181818 \ldots \ldots=0 . \overline{18}$

Non-terminating repeating
(vi) $\frac{329}{400}=0.8225$

Terminating

Page : 14 , Block Name : Exercise 1.3

Q2 You know that $\frac{1}{7}=0 . \overline{142857}$. Can you predict what the decimal expansions of $\frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}$ are, without actually doing the long division? If so, how?
[Hint : Study the remainders while finding the value of $1 / 7$ carefully.]
Answer. Yes. It can be done as follows.

$$
\begin{aligned}
& \frac{2}{7}=2 \times \frac{1}{7}=2 \times 0 . \overline{142857}=0 . \overline{285714} \\
& \frac{3}{7}=3 \times \frac{1}{7}=3 \times 0 . \overline{142857}=0 . \overline{428571} \\
& \frac{4}{7}=4 \times \frac{1}{7}=4 \times 0.142857=0.571428 \\
& \frac{5}{7}=5 \times \frac{1}{7}=5 \times 0 . \overline{142857}=0.714285 \\
& \frac{6}{7}=6 \times \frac{1}{7}=6 \times 0 . \overline{142857}=0 . \overline{857142}
\end{aligned}
$$

Page : 14 , Block Name : Exercise 1.3

Q3 Express the following in the form p / q, where p and q are integers and $\mathrm{q} \neq 0$.
(i) $0 . \overline{6}_{\text {(ii) }} 0.4 \overline{7}_{\text {(iii) }} 0 . \overline{001}$

Answer.
(i) $0 . \overline{6}=0.666 \ldots$

Let $x=0.666 \ldots$
$10 x=6.666 \ldots$
$10 x=6+x$
$9 x=6$
$x=\frac{2}{3}$
(ii) $0 . \overline{47}=0.4777 \ldots \ldots$
$=\frac{4}{10}+\frac{0.777}{10}$
Let $x=0.777 \ldots$
$10 x=7.777 \ldots$
$10 x=7+x$
$x=\frac{7}{9}$
$\frac{4}{10}+\frac{0.777 \ldots}{10}=\frac{4}{10}+\frac{7}{90}$

$$
=\frac{36+7}{90}=\frac{43}{90}
$$

(iii) $\overline{0.001}=0.001001 \ldots$

Let $x=0.001001 \ldots$
$1000 x=1.001001 \ldots$
$1000 x=1+x$
$999 x=1$
$x=\frac{1}{999}$
Page : 14, Block Name : Exercise 1.3
Q4 Express 0.99999 in the form p / q. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Answer. Let $\mathrm{x}=0.9999 \ldots$
$10 \mathrm{x}=9.9999 \ldots$.
$10 \mathrm{x}=9+\mathrm{x}$
$9 x=9$
$\mathrm{x}=1$

Page : 14, Block Name : Exercise 1.3

Q5 What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $1 / 17$? Perform the division to check your answer.

Answer. It can be observed that,
$\frac{1}{17}=0 . \overline{0588235294117647}$
There are 16 digits in the repeating block Of the decimal expansion of $\frac{1}{17}$.

Page : 14 , Block Name : Exercise 1.3

Q6 Look at several examples of rational numbers in the form $\mathrm{p} / \mathrm{q}(\mathrm{q} \neq 0)$, where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Answer. Terminating decimal expansion will occur when denominator q of rational number p / q is either of $2,4,5,8,10$, and so on...
$\frac{9}{4}=2.25$
$\frac{11}{8}=1.375$
$\frac{27}{5}=5.4$
It can be observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator Of the given fractions has the power Of 2 only or 5 only or both.

Page : 14 , Block Name : Exercise 1.3

Q7 Write three numbers whose decimal expansions are non-terminating non-recurring.
Answer. 3 numbers whose decimal expansions are non-terminating non-recurring are as follows.
0. 505005000500005000005...
0.7207200720007200007200000...
0.080080008000080000080000008...

Page : 14, Block Name : Exercise 1.3

Q8 Find three different irrational numbers between the rational numbers $\frac{5}{7}$ and $\frac{9}{11}$.

Answer.
$\frac{5}{7}=0.714285$
$\frac{9}{11}=0 . \overline{81}$
3 irrational numbers are as follows.
0.73073007300073000073 . .
0.75075007500075000075 . .
0.79079007900079000079 ...

Page : 14 , Block Name : Exercise 1.3
Q9 Classify the following numbers as rational or irrational :
(i) $\sqrt{23}$ (ii) $\sqrt{225}$ (iii) 0.3796
(iv) 7.478478 (v) $1.101001000100001 \ldots$

Answer. (i) $\sqrt{23}=4.79583152331 \ldots \ldots$
As the decimal expansion of this number is non-terminating non-recurring, therefore, it is an irrational number.
$\sqrt{225}=15=\frac{15}{1}$
It is a rational number as it can be represented in $\frac{p}{q}$ form.
(iii) 0.3796

As the decimal expansion of this number is terminating, therefore, it is a rational number.
(iv) $7.478478 \ldots=7 . \overline{478}$

As the decimal expansion Of this number is non-terminating recurring, therefore, it is a rational number.
(v) As the decimal expansion of this number is non-terminating non-repeating, therefore, it is an irrational number.

Page : 14, Block Name : Exercise 1.3

Exercise 1.4

Q1 Visualise 3.765 on the number line, using successive magnification.

Answer. 3.765 can be visualised as in the following steps.

Page : 18, Block Name : Exercise 1.4
Q2 Visualise $4 . \overline{26}$ on the number line, up to 4 decimal places.
Answer. $4 . \overline{26}=4.2626 \ldots$
4.2626 can be visualised as in the following steps.

Page : 18, Block Name : Exercise 1.4

Exercise 1.5

Q1 Classify the following numbers as rational or irrational:
(i) $2-\sqrt{5}$
(ii) $(3+\sqrt{23})-\sqrt{23}$
(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}$
$(i v)^{\frac{1}{\sqrt{2}}}(v) 2 \pi$

Answer. ${ }^{(\mathrm{i})^{2-\sqrt{5}}=2-2.2360679 \ldots .}$

$$
=-0.2360679 \ldots
$$

As the decimal expansion Of this expression is non-terminating non-recurring, therefore, it is an irrational number.
(ii) ${ }^{(3+\sqrt{23})-\sqrt{23}}=3=\frac{3}{1}$

As it can be represented in p / q form, therefore, it is a rational number.
(iii) $\frac{2 \sqrt{7}}{7 \sqrt{7}}=\frac{2}{7}$

As it can be represented in p / q form, therefore, it is a rational number.
(iv) $\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=0.7071067811 \ldots$

As the decimal expansion Of this expression is non-terminating non-recurring, therefore, it is an irrational number.
(v) $2 \mathrm{n}=2(3.1415 \backslash$ dots $) \backslash)=6.2830 \ldots$

As the decimal expansion Of this expression is non-terminating non-recurring, therefore, it is an irrational number.

Page : 24 , Block Name : Exercise 1.5

Q2 Simplify each of the following expressions:

$$
\begin{aligned}
& (\mathrm{i})^{(3+\sqrt{3})(2+\sqrt{2})}(\mathrm{ii})(3+\sqrt{3})(3-\sqrt{3}) \\
& (\mathrm{iii})(\sqrt{5}+\sqrt{2})_{(\mathrm{ivv})}^{2}(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})
\end{aligned}
$$

Answer.
(i) $\quad(3+\sqrt{3})(2+\sqrt{2})=3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2})$
$=6+3 \sqrt{2}+2 \sqrt{3}+\sqrt{6}$
(ii) ${ }^{(3+\sqrt{3})(3-\sqrt{3})}=(3)^{2}-(\sqrt{3})^{2}$

$$
=9-3=6
$$

(ii) $(\sqrt{5}+\sqrt{2})^{2}=(\sqrt{5})^{2}+(\sqrt{2})^{2}+2(\sqrt{5})(\sqrt{2})$
$=5+2+2 \sqrt{10}=7+2 \sqrt{10}$
(ii) $(\sqrt{5}+\sqrt{2})^{2}=(\sqrt{5})^{2}+(\sqrt{2})^{2}+2(\sqrt{5})(\sqrt{2})$
$=5+2+2 \sqrt{10}=7+2 \sqrt{10}$
$(\mathrm{v})(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^{2}-(\sqrt{2})^{2}$
$=5-2=3$
Page : 24 , Block Name : Exercise 1.5
Q3 Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, $\pi=c / d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Answer. There is no contradiction. When we measure a length with scale or any other instrument, we only obtain an approximate rational value. We never obtain an exact value. For this reason, we may not realise that either c or d is irrational. Therefore, the fraction c / d is irrational. Hence, n is irrational.

Page : 24 , Block Name : Exercise 1.5
Q4 Represent $\sqrt{9.3}$ on the number line.

Answer. Mark a line segment 0B 9.3 on number line. Further, take BC of 1 unit. Find the midpoint D of OC and draw a semi-circle on OC while taking D as its centre. Draw a perpendicular to line OC passing through point B. Let it intersect the semi-circle at E. Taking B as centre and BE as radius, draw an arc intersecting number line at F . BF is $\sqrt{9.3}$.

Page : 24 , Block Name : Exercise 1.5

Q5 Rationalise the denominators of the following:
(i) $\frac{1}{\sqrt{7}}$
(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}$
(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}$
(iv) $\frac{1}{\sqrt{7}-2}$

Answer. (i) $\frac{1}{\sqrt{7}}=\frac{1 \times \sqrt{7}}{1 \times \sqrt{7}}=\frac{\sqrt{7}}{7}$
(ii) $\frac{1}{\sqrt{7}-\sqrt{6}}=\frac{1}{(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})}$
$=\frac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}$
$=\frac{\sqrt{7}+\sqrt{6}}{7-6}=\frac{\sqrt{7}+\sqrt{6}}{1}=\sqrt{7}+\sqrt{6}$
(iii) $\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{(\sqrt{5}-\sqrt{2})}{(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})}$
$=\frac{\sqrt{5}-\sqrt{2}}{(\sqrt{5})^{2}-(\sqrt{2})^{2}}=\frac{\sqrt{5}-\sqrt{2}}{5-2}$
$=\frac{\sqrt{5}-\sqrt{2}}{3}$
(iv) $\frac{1}{\sqrt{7}-2}=\frac{1}{(\sqrt{7}-2)(\sqrt{7}+2)}$
$=\frac{\sqrt{7}+2}{(\sqrt{7})^{2}-(2)^{2}}$
$=\frac{\sqrt{7}+2}{7-4}=\frac{\sqrt{7}+2}{3}$
Page : 24 , Block Name : Exercise 1.5

Exercise 1.6

Q1 Find: (i) $64^{\frac{1}{2}}$ (ii) $32^{\frac{1}{5}}$ (iii) $125^{\frac{1}{3}}$.

Answer. (i)

$$
\begin{aligned}
64^{\frac{1}{2}} & =\left(2^{6}\right)^{\frac{1}{2}} \\
& =2^{6 \cdot \frac{1}{2}} \quad\left[\left(a^{m}\right)^{n}=a^{m}\right] \\
& =2^{3}=8
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 32^{\frac{1}{5}}=\left(2^{5}\right)^{\frac{1}{5}} \\
&=(2)^{5 \frac{1}{5}} \\
&=2^{1}=2 \\
& \text { (iii) }
\end{aligned}
$$

$$
\begin{aligned}
(125)^{\frac{1}{3}} & =\left(5^{3}\right)^{\frac{1}{3}} \quad\left[\left(a^{m}\right)^{n}=a^{m}\right] \\
& =5^{3 \frac{1}{3}} \\
& =5^{1}=5
\end{aligned}
$$

Page : 26 , Block Name : Exercise 1.6
Q2 Find:
(i) ${ }^{\frac{3}{2}}$
ii) $32^{\frac{2}{5}}$
(iii) $16^{\frac{3}{4}}$
(iv) $125^{\frac{-1}{3}}$

Answer.
(i)

$$
\begin{aligned}
9^{\frac{3}{2}} & =\left(3^{2}\right)^{\frac{3}{2}} \quad\left[\left(a^{m}\right)^{n}=a^{m}\right] \\
& =3^{2 \frac{3}{2}} \\
& =3^{3}=27
\end{aligned}
$$

(ii)
$\begin{aligned}(32)^{\frac{2}{5}} & =\left(2^{5}\right)^{\frac{2}{5}} \quad\left[\left(a^{m}\right)^{n}=a^{m}\right] \\ & =2^{5 \times \frac{2}{5}} \quad\end{aligned}$

$$
=2^{2}=4
$$

$$
(16)^{\frac{3}{4}}=\left(2^{4}\right)^{\frac{3}{4}}
$$

(iii) $\quad \begin{aligned} & =2^{4+\frac{3}{4}} \quad\left[\left(a^{m}\right)^{n}=a^{m}\right] \\ & =2^{3}=8\end{aligned}$
(iv)

$$
\begin{aligned}
& (125)^{\frac{-1}{3}}=\frac{1}{(125)^{\frac{1}{3}}} \quad\left[a^{-n}=\frac{1}{a^{n}}\right] \\
& =\frac{1}{\left(5^{3}\right)^{\frac{1}{3}}} \\
& =\frac{1}{5^{3 \frac{1}{3}}} \quad\left[\left(a^{m}\right)^{n}=a^{m}\right] \\
& =\frac{1}{5}
\end{aligned}
$$

Page : 26, Block Name : Exercise 1.6

Q3 Simplify:

(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$
(ii) $\left(\frac{1}{3^{3}}\right)^{7}$ (iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$
(iv) $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$.

Answer.

(i)

$$
\begin{aligned}
2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} & =2^{\frac{2 \cdot 1}{3^{\prime}}} \\
& =2^{\frac{10+3}{15}}=2^{\frac{13}{15}}
\end{aligned}
$$

(ii)

$$
\begin{array}{rlrl}
\left(\frac{1}{3^{3}}\right)^{7} & =\frac{1}{3^{3 m}} & & {\left[\left(a^{m}\right)^{n}=a^{m m}\right]} \\
& =\frac{1}{3^{21}} & \\
& =3^{-21} & {\left[\frac{1}{a^{m}}=a^{-m}\right]}
\end{array}
$$

(iii)

$$
\begin{aligned}
\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} & =11^{\frac{1-1}{24}} \\
& =11^{\frac{2-1}{4}}=11^{\frac{1}{4}}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
7^{\frac{1}{2} \cdot 8^{\frac{1}{2}}} & =(7 \times 8)^{\frac{1}{2}} \quad\left[a^{m} \cdot b^{m}=(a b)^{m}\right] \\
& =(56)^{\frac{1}{2}}
\end{aligned}
$$

Page : 26, Block Name : Exercise 1.6

