NCERT

SOLUTIONS

CLASS - 7TH

aglasem.com

Class : 7th
Subject: Maths
Chapter: 10
Chapter Name : Practical Geometry

Exercise 10.1

Q1 Draw a line, say $A B$, take a point C outside it. Through C, draw a line parallel to $A B$ using ruler and compasses only.

Answer. The steps of construction are as follows.
(i) Draw a line $A B$. Take a point P on it. Take a point C outside this line. Join C to P.

(ii) Taking P as centre and with a convenient radius, draw an arc intersecting line AB at point Dand PC at point E.

(iii) Taking C as centre and with the same radius as before, draw an arc FG intersecting PC at H.

(iv) Adjust the compasses up to the length of DE . Without changing the opening of compasses and taking H as the centre, draw an arc to intersect the previously drawn arc FG at point I .

(v) Join the points C and I to draw a line ' l '.

This is the required line which is parallel to line AB .

Page : 196 , Block Name : Exercise 10.1

Q2 Draw a line l. Draw a perpendicular to 1 at any point on 1 . On this perpendicular choose a point $\mathrm{X}, 4 \mathrm{~cm}$ away from 1 . Through X , draw a line m parallel to 1 .

Answer. The steps of construction are as follows.
(i) Draw a line I and take a point P on line I. Then, draw a perpendicular at point P .

(ii) Adjusting the compasses up to the length of 4 cm , draw an arc to intersect this perpendicular at point X . Choose any point Y on line l. Join X to Y .

(iii) Taking Y as centre and with a convenient radius, draw an arc intersecting I at A and XY at B.

(iv) Taking X as centre and with the same radius as before, draw an arc CD cutting XY at E .

(v) Adjust the compasses up to the length of AB . Without changing the opening of compasses and taking E as the centre, draw an arc to intersect the previously drawn arc CD

(vi) Join the points X and F to draw a line m .

Line m is the required line which is parallel to line 1.

Page : 196 , Block Name : Exercise 10.1

Q3 Let 1 be a line and P be a point not on 1 . Through P, draw a line m parallel to l. Now join P to any point Q on 1 . Choose any other point R on m . Through R , draw a line parallel to PQ . Let this meet l at S. What shape do the two sets of parallel lines enclose?

Answer. (i) Draw a line I and take a point A on it. Take a point P not on I and join A to P.

(ii) Taking A as centre and with a convenient radius, draw an arc cutting I at B and AP at C .

(iii) Taking P as centre and with the same radius as before, draw an arc DE to intersect AP at F .

(iv) Adjust the compasses up to the length of BC. Without changing the opening of compasses and taking F as the centre, draw an arc to intersect the previously drawn arc DE at point G .

(v) Join P to G to draw a line m . Line m will be parallel to line 1 .

(vi) Join P to any point Q on line l. Choose another point R on line m. Similarly, a line can bedrawn through point R and parallel to PQ .

Let it meet line I at point S. In quadrilateral PQSR, opposite lines are parallel to each other. PQ II RS and PR II QS Thus, \&mnSq1 PQSR is a parallelogram.

Page : 196 , Block Name : Exercise 10.1

Exercise 10.2

Q1 Construct $\triangle \mathrm{XYZ}$ in which $\mathrm{XY}=4.5 \mathrm{~cm}, \mathrm{YZ}=5 \mathrm{~cm}$ and $\mathrm{ZX}=6 \mathrm{~cm}$.

Answer. The rough figure of this triangle is as follows.

The required triangle is constructed as follows.
(i) Draw a line segment $Y Z$ of length 5 cm .

(ii) Point X is at a distance of 4.5 cm from point Y . Therefore, taking point Y as centre, draw an arc of 4.5 cm radius.

(iii) Point X is at a distance of 6 cm from point Z . Therefore, taking point Z as centre, draw an arc of 6 cm radius. Mark the point of intersection of the arcs as X. Join XY and XZ.

XYZ is the required triangle.

Page : 199 , Block Name : Exercise 10.2

Q2 Construct an equilateral triangle of side 5.5 cm .

Answer. An equilateral triangle of side 5.5 cm has to be constructed. We know that all sides of an equilateral triangle are of equal length. Therefore, a triangle $A B C$ has to be constructed with $\mathrm{AB}:: \mathrm{BC}=\mathrm{CA} 5.5 \mathrm{~cm}$. The steps of construction are as follows.
(i) Draw a line segment BC of length 5.5 cm .

(ii) Taking point B as centre, draw an arc of 5.5 cm radius.

B $\quad 5.5 \mathrm{~cm} \quad$ C

(iii) Taking point C as centre, draw an arc of 5.5 cm radius to meet the previous arc at point A .

$$
\stackrel{A}{A}
$$

(iv) Join A to B and C.

$A B C$ is the required equilateral triangle.
Page : 199 , Block Name : Exercise 10.2
Q 3 Draw $\triangle \mathrm{PQR}$ with $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{QR}=3.5 \mathrm{~cm}$ and $\mathrm{PR}=4 \mathrm{~cm}$. What type of triangle is this?
Answer. The steps of construction are as follows.
(i) Draw a line segment QR of length 3.5 cm .

(ii) Taking point Q as centre, draw an arc of 4 cm radius.

(iii) Taking point R as centre, draw an arc of 4 cm radius to intersect the previous arc at point P.

$Q \quad 3.5 \mathrm{~cm} \quad \mathrm{R}$

(iv) Join P to Q and R .

PQR is the required triangle. As the two sides of this triangle are of the same length $(\mathrm{PQ}=\mathrm{PR})$, therefore, ?PQR is an isosceles triangle.

Page : 199 , Block Name : Exercise 10.2
Q4 Construct $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=2.5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AC}=6.5 \mathrm{~cm}$. Measure $\angle \mathrm{B}$.
Answer. The steps of construction are as follows.
(i) Draw a line segment BC of length 6 cm .

B $\quad 6 \mathrm{~cm}$
(ii) Taking point C as centre, draw an arc of 6.5 cm radius.

(iii) Taking point B as centre, draw an arc of radius 2.5 cm to meet the previous arc at point A .

(iv) Join A to B and C.

ABC is the required triangle. $\angle \mathrm{B}$ can be measured with the help of protractor. It comes to 90°.

Page : 199, Block Name : Exercise 10.2

Exercise 10.3

Q1 Construct $\triangle \mathrm{DEF}$ such that $\mathrm{DE}=5 \mathrm{~cm}, \mathrm{DF}=3 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{EDF}=90^{\circ}$.
Answer. The rough sketch of the required ?DEF is as follows.

The steps of construction are as follows.
(i) Draw a line segment DE of length 5 cm .

(ii) At point D , draw a ray DX making an angle of 90° with DE .

(iii) Taking D as centre, draw an arc of 3 cm radius. It will intersect DX at point F .

(iv) Join F to E. ?DEF is the required triangle.

Page : 200 , Block Name : Exercise 10.3
Q2 Construct an isosceles triangle in which the lengths of each of its equal sides is 6.5 cm and the angle between them is 110°.

Answer. An isosceles triangle PQR has to be constructed with $\mathrm{PQ} \mathrm{QR}=6.5 \mathrm{~cm}$. A rough sketch of the required triangle can be drawn as follows.

The steps of construction are as follows.
(i) Draw the line segment QR of length 6.5 cm .

(ii) At point Q , draw a ray QX making an angle 110° with QR .

(iii) Taking Q as centre, draw an arc of 6.5 cm radius. It intersects at point P .

(iv) Join P to R to obtain the required triangle PQR .

Page : 200 , Block Name : Exercise 10.3
Q3 Construct $\triangle \mathrm{ABC}$ with $\mathrm{BC}=7.5 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{m} \angle \mathrm{C}=60^{\circ}$.
Answer. A rough sketch of the required triangle is as follows.

The steps of construction are as follows.
(i) Draw a line segment BC of length 7.5 cm .

(ii) At point C , draw a ray CX making 60° with BC .

(iii) Taking C as centre, draw an arc of 5 cm radius. It intersects CX at point A .

(iv) Join A to B to obtain triangle ABC.

Page : 200 , Block Name : Exercise 10.3

Exercise 10.4

Q1 Construct $\triangle A B C$, given $m \angle A=60^{\circ}, m \angle B=30^{\circ}$ and $A B=5.8 \mathrm{~cm}$. Answer. A rough sketch of the required ? ABC is as follows.

The steps of construction are as follows.
(i) Draw a line segment $A B$ of length 5.8 cm.

(ii) At point A , draw a ray AX making 60° angle with AB .

(iii) At point B , draw a ray BY , making 30° angle with AB .

(iv) Point C has to lie on both the rays, AX and BY . Therefore, C is the point of intersection of these two rays.

This is the required triangle ABC.

Page : 202 , Block Name : Exercise 10.4

Q2 Construct $\triangle \mathrm{PQR}$ if $\mathrm{PQ}=5 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{PQR}=105^{\circ}$ and $\mathrm{m} \angle \mathrm{QRP}=40^{\circ}$. (Hint: Recall angle-sum property of a triangle).

Answer. A rough sketch of the required $? \mathrm{PQR}$ is as follows.

In order to construct ?PQR, the measure of $\angle R P Q$ has to be calculated.
According to the angle sum property of triangles,
$\angle P Q R+\angle P R Q+\angle R P Q=180^{\circ}$
$105^{\circ}+40^{\circ}+\angle R P Q=180^{\circ}$
$145^{\circ}+\angle \mathrm{RPQ}=180^{\circ}$
$\angle R P Q=180^{\circ}-145^{\circ}=35^{\circ}$
The steps of construction are as follows.
(i) Draw a line segment PQ of length 5 cm .

(ii) At P , draw a ray PX making an angle of 35° with PQ .

(iii) At point Q , draw a ray QY making an angle of 105° with PQ .

(iv) Point R has to lie on both the rays, PX and QY. Therefore, R is the point of intersection of these two rays.

This is the required triangle $P Q R$.

Page : 202 , Block Name : Exercise 10.4
Q3 Examine whether you can construct $\triangle \mathrm{DEF}$ such that $\mathrm{EF}=7.2 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{E}=110^{\circ}$ and $\mathrm{m} \angle \mathrm{F}=$ 80°. Justify your answer.

Answer. Given that, $\mathrm{m} \angle \mathrm{E}=110^{\circ}$ and $\mathrm{m} \angle \mathrm{F}=80^{\circ}$
Therefore, $m \angle E+m \angle F=110^{\circ}+80^{\circ}=190^{\circ}$
However, according to the angle sum property of triangles, we should obtain $m \angle E+m \angle F+m \angle D=180^{\circ}$
Therefore, the angle sum property is not followed by the given triangle. And thus, we cannot construct ? DEF with the given measurements.

Also, it can be observed that point D Should lie on both rays, EX and FY, for constructing the required triangle. However, both rays are not intersecting each other. Therefore, the required triangle cannot be formed.

Page : 202 , Block Name : Exercise 10.4

Exercise 10.5

Q 1 Construct the right angled $\triangle P Q R$, where $\mathrm{m} \angle \mathrm{Q}=90^{\circ}, \mathrm{QR}=8 \mathrm{~cm}$ and $P R=10 \mathrm{~cm}$.
Answer. A rough sketch of ?PQR is as follows.

The steps of construction are as follows.
(i) Draw a line segment QR of length 8 cm .

(ii) At point Q , draw a ray QX making 90° with QR .

(iii) Taking R as centre, draw an arc of 10 cm radius to intersect ray QX at point P .

(iv) Join P to R. ?PQR is the required right-angled triangle.

Page : 203 , Block Name : Exercise 10.5
Q2 Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs is 4 cm long.

Answer. A right-angled triangle $A B C$ with hypotenuse 6 cm and one of the legs as 4 cm has to be constructed. A rough sketch of ?ABC is as follows.

The steps of construction are as follows.
(i) Draw a line segment BC Of length 4 cm .

(ii) At point B , draw a ray BX making an angle of 90° with BC .

(iii) Taking C as centre, draw an arc of 6 cm radius to intersect ray BX at point A .

(iv) Join A to C to obtain the required ?ABC.

Page : 203 , Block Name : Exercise 10.5

Q3 Construct an isosceles right-angled triangle $A B C$, where $m \angle A C B=90^{\circ}$ and $A C=6 \mathrm{~cm}$.

Answer. In an isosceles triangle, the lengths of any two sides are equal.
Let in ? $\mathrm{ABC}, \mathrm{AC}=\mathrm{BC}=6 \mathrm{~cm}$. A rough sketch of this $? \mathrm{ABC}$ is as follows.

The steps of construction are as follows.
(i) Draw a line segment AC of length 6 cm .

(ii) At point C, draw a ray CX making an angle of 90° with AC.

(iii) Taking point C as centre, draw an arc of 6 cm radius to intersect CX at point B .

(iv) Join A to B to obtain the required ? ABC .

Page : 203 , Block Name : Exercise 10.5

