NCERT

SOLUTIONS

CLASS - 9th

aglasem.com

Class: 9th
Subject : Science
Chapter: 3
Chapter Name : ATOMS AND MOLECULES

Q1 In a reaction, 5.3 g of sodium carbonate reacted with 6 g of acetic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium acetate. Show that these observations are in agreement with the law of conservation of mass.
sodium carbonate + acetic acid \rightarrow sodium acetate + carbon dioxide + water

Answer. In the given reaction, sodium carbonate reacts with ethanoic acid to produce sodium ethanoate, carbon dioxide, and water.

```
Sodium + Ethanoic }\longrightarrow\mathrm{ Sodium + Carbon + Water
carbonate acid ethanoate dioxide
Mass of sodium carbonate = 5.3 g (Given)
Mass of ethanoic acid = 6gg (Given)
Mass of sodium ethanoate = 8.2 g (Given)
Mass of carbon dioxide =2.2g}\mathrm{ (Given)
Mass of water = 0.9 g (Given)
Now, total mass before the reaction = (5.3+6) g
=11.3 g
And, total mass after the reaction =(8.2+2.2+0.9) g
= 11.3 g
\thereforeTotal mass before the reaction =Total mass after the reaction
Hence, the given observations are in agreement with the law of conservation of
mass.
```

Page : 32 , Block Name : Questions

Q2 Hydrogen and oxygen combine in the ratio of 1:8 by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas?

Answer. It is given that the ratio of hydrogen and oxygen by mass to form water is $1: 8$. Then, the mass of oxygen gas required to react completely with 1 g of hydrogen gas is 8 g . Therefore, the mass of oxygen gas required to react completely with 3 g of hydrogen gas is $8 \mathrm{x} 3 \mathrm{~g}=24 \mathrm{~g}$.

Page : 33 , Block Name : Questions

Q3 Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?

Answer.The postulate of Dalton's atomic theory which is a result of the law of conservation of mass is: Atoms are indivisible particles, which can neither be created nor destroyed in a chemical reaction.

Page : 33 , Block Name : Questions

Q4 Which postulate of Dalton's atomic theory can explain the law of definite proportions?

Answer. The postulate of Dalton's atomic theory which can explain the law of definite proportion is: The relative number and kind of atoms in a given compound remains constant.

Page : 33 , Block Name : Questions
Q1. Define the atomic mass unit?
Answer. Mass unit equal to exactly one-twelfth the mass of one atom of carbon-12 is called one atomic mass unit. It is written as 'u'.

Page : 35, Block Name : Questions

Q2 Why is it not possible to see an atom with naked eyes?

Answer.The size of an atom is so small that it is not possible to see it with naked eyes. Also, the atom of an element does not exist independently.

Page : 35 , Block Name : Questions
Q1 Write down the formulae of
(i) sodium oxide
(ii) aluminium chloride
(iii) sodium sulphide
(iv) magnesium hydroxide

Answer. (i) sodium oxide- $\mathrm{Na}_{2} \mathrm{O}$
(ii) aluminium chloride- AlCl_{3}
(iii) sodium sulphide- $\mathrm{Na}_{2} \mathrm{~S}$
(iv) magnesium hydroxide- $\mathrm{Mg}(\mathrm{OH})_{2}$

Page : 39, Block Name : Questions
Q2 Write down the names of compounds represented by the following formulae:
(i) $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(ii) CaCl_{2}
(iii) $K_{2} \mathrm{SO}_{4}$
(iv) KNO_{3}
(v) CaCO_{3}

Answer. (i) $A l_{2}\left(\mathrm{SO}_{4}\right)_{3}$-> Aluminium sulphate
(ii) CaCl_{2}-> Calcium chloride
(iii) $K_{2} \mathrm{SO}_{4}->$ Potassium sulphate
(iv) KNO_{3}-> Potassium nitrate
(v) $\mathrm{CaCO}_{3}->$ Calcium carbonate

Page : 39, Block Name : Questions
Q3 What is meant by the term chemical formula?

Answer. The chemical formula of a compound means the symbolic representation of the composition of a compound. From the chemical formula of a compound, we can know the number and kinds of atoms of different elements that constitute the compound. For example, from the chemical formula C02 of carbon dioxide, we come to know that one carbon atom and two oxygen atoms are chemically bonded together to form one molecule of the compound, carbon dioxide.

Page : 39 , Block Name : Questions

Q4 How many atoms are present in a
(i) $\mathrm{H}_{2} \mathrm{~S}$ molecule and
(ii) PO_{4}^{3-} ion?

Answer. (i) In an $H_{2} S$ molecule, three atoms are present; two of hydrogen and one of sulphur.
(ii) In a PO_{4}^{3-} ion, five atoms are present; one of phosphorus and four of oxygen.

Q1 Calculate the molecular masses of $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{CO}_{2}, \mathrm{CH} 4, \mathrm{C} 2 \mathrm{H} 6, \mathrm{C} 2 \mathrm{H} 4, \mathrm{NH} 3, \mathrm{CH}_{3} \mathrm{OH}$.
Answer.

```
Molecular mass of \(\mathrm{H}_{2}=2 \times\) Atomic mass of H
\(=2 \times 1\)
\(=2 \mathrm{u}\)
Molecular mass of \(\mathrm{O}_{2}=2 \times\) Atomic mass of O
\(=2 \times 16\)
\(=32 \mathrm{u}\)
Molecular mass of \(\mathrm{Cl}_{2}=2 \times\) Atomic mass of Cl
\(=2 \times 35.5\)
\(=71 \mathrm{u}\)
Molecular mass of \(\mathrm{CO}_{2}=\) Atomic mass of \(\mathrm{C}+2 \times\) Atomic mass of O
\(=12+2 \times 16\)
\(=44 \mathrm{u}\)
Molecular mass of \(\mathrm{CH}_{4}=\) Atomic mass of \(\mathrm{C}+4 \times\) Atomic mass of H
\(=12+4 \times 1\)
\(=16 \mathrm{u}\)
Molecular mass of \(\mathrm{C}_{2} \mathrm{H}_{6}=2 \times\) Atomic mass of \(\mathrm{C}+6 \times\) Atomic mass of H
\(=2 \times 12+6 \times 1\)
\(=30 \mathrm{u}\)
Molecular mass of \(\mathrm{C}_{2} \mathrm{H}_{4}=2 \times\) Atomic mass of \(\mathrm{C}+4 \times\) Atomic mass of H
\(=2 \times 12+4 \times 1\)
\(=28 \mathrm{u}\)
Molecular mass of \(\mathrm{NH}_{3}=\) Atomic mass of \(\mathrm{N}+3 \times\) Atomic mass of H
\(=14+3 \times 1\)
\(=17 \mathrm{u}\)
Molecular mass of \(\mathrm{CH}_{3} \mathrm{OH}=\) Atomic mass of \(\mathrm{C}+4 \times\) Atomic mass of \(\mathrm{H}+\) Atomic
mass of \(O\)
\(=12+4 \times 1+16\)
```


Page : 40 , Block Name : Questions

Q2 Calculate the formula unit masses of $\mathrm{ZnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$, given atomic masses of $\mathrm{Zn}=65 \mathrm{u}$, $\mathrm{Na}=23 \mathrm{u}, \mathrm{K}=39 \mathrm{u}, \mathrm{C}=12 \mathrm{u}$, and $\mathrm{O}=16 \mathrm{u}$.

Answer.

Formula unit mass of $\mathrm{ZnO}=$ Atomic mass of $\mathrm{Zn}+$ Atomic mass of O
$=65+16$
$=81 \mathrm{u}$
Formula unit mass of $\mathrm{Na}_{2} \mathrm{O}=2 \times$ Atomic mass of $\mathrm{Na}+$ Atomic mass of O
$=2 \times 23+16$
$=62 \mathrm{u}$
Formula unit mass of $\mathrm{K}_{2} \mathrm{CO}_{3}=2 \times$ Atomic mass of $\mathrm{K}+$ Atomic mass of $\mathrm{C}+3 \times$
Atomic mass of O
$=2 \times 39+12+3 \times 16$
$=138 \mathrm{u}$

Page : 40 , Block Name : Questions

Q1 If one mole of carbon atoms weighs 12 grams, what is the mass (in grams) of 1 atom of carbon?

Answer. One mole of carbon atoms weighs 12 g (Given)
i.e., mass of I mole of carbon atoms $=12 \mathrm{~g}$

Then, mass of 6.022×10^{23} number of carbon atoms $=12$
Therefore, mass of I atom of carbon $\frac{12}{6.022 \times 10^{23}} \mathrm{~g}$
$=1.9926 \times 10^{-21} \mathrm{~g}$

Page : 42 , Block Name : Questions
Q2 Which has more number of atoms, 100 grams of sodium or 100 grams of iron (given, atomic mass of $\mathrm{Na}=23 \mathrm{u}, \mathrm{Fe}=56 \mathrm{u}$)?

Answer. Atomic mass of $\mathrm{Na}=23 \mathrm{u}$ (Given)
Then, gram atomic mass of $\mathrm{Na}=23 \mathrm{~g}$
Now, 23 g of Na contains $=6.022 \times 10^{23}$ number of atoms
Thus, 100 g of Na contains $=\frac{6.022 \times 10^{23}}{23} \times 100$
number of atoms $=2.6182 \times 10^{24}$ number of atoms,
Again, atomic mass of $\mathrm{Fe}=56 \mathrm{u}$ (Given)
Then, gram atomic mass of $\mathrm{Fe}=56 \mathrm{~g}$
Now, 56 g of Fe contains $=\frac{6.022 \times 10^{23}}{56} \times 100$ number of atoms
Thus, 100 g of Fe contains $=1.0753 \times 10^{24}$ numberofatoms
Therefore, 100 grams of sodium contain more number of atoms than 100 grams of iron.

Page : 42 , Block Name : Questions

Q1 A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.

Answer. Mass of boron $=0.096 \mathrm{~g}$ (Given)
Mass of oxygen $=0.144$ (Given)
Mass of sample $=0.24 \mathrm{~g}$ (Given)
Thus, percentage of boron by weight in the compound $=\frac{0.096}{0.24} \times 100$ =40 \%
And, percentage of oxygen by weight in the compound $=\frac{0.144}{0.24} \times 100$
=60\%

Page : 43 , Block Name : Exercise
Q2 When 3.0 g of carbon is burnt in 8.00 g oxygen, 11.00 g of carbon dioxide is produced. What
mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen? Which law of chemical combination will govern your answer?

Answer. Carbon + Carbon ->dioxide
3 g of carbon reacts with 8 g of oxygen to produce 11 g of carbon dioxide.
If 3 g of carbon is burnt In SO g of oxygen, then 3 g of carbon will react with 8 g of oxygen. The remaining 42 g of oxygen will be left un-reactive.
In this case also, only 11 g of carbon dioxide will be formed.
The above answer is governed by the law of constant proportions.

Page : 43 , Block Name : Exercise

Q3 What are polyatomic ions? Give examples.
Answer. A polyatomic ion is group of atoms carrying a charge (positive or negative). For Example ammonium ion $\left(\mathrm{NH}_{4}^{+}\right)$,hydroxide ion OH^{-}, carbonate ion co_{3}^{-2}, sulphate ion SO_{4}^{-2}

Page : 44 , Block Name : Exercise
Q4 Write the chemical formulae of the following.
(a) Magnesium chloride
(b) Calcium oxide
(c) Copper nitrate
(d) Aluminium chloride
(e) Calcium carbonate.

Answer.(a) Magnesium chloride- MgCl_{2}
(b) Calcium oxide - CaO
(c) Copper nitrate - $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(d) Aluminium chloride $-\mathrm{AlCl}_{3}$
(e) Calcium carbonate- CaCO_{3}

Page : 44 , Block Name : Exercise
Q5 Give the names of the elements present in the following compounds.
(a) Quick lime
(b) Hydrogen bromide
(c) Baking powder
(d) Potassium sulphate.

Answer.

Compound	Chemical formula	Elements present
Quick lime	CaO	Calcium, oxygen
Hydrogen bromide	HBr	Hydrogen, bromine
Baking powder	NaHCO_{3}	Sodium, hydrogen, carbon, oxygen
Potassium sulphate	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Potassium, sulphur, oxygen

Page : 44 , Block Name : Exercise
Q6 Calculate the molar mass of the following substances.
(a) Ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$
(b) Sulphur molecule, S_{8}
(c) Phosphorus molecule, P_{4} (Atomic mass of phosphorus = 31)
(d) Hydrochloric acid, HCl
(e) Nitric acid, HNO_{3}

Answer. (a) Molar mass of ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}=2 \times 12+2 \times 1=26 \mathrm{~g}$
(b) Molar mass of sulphur molecule, $S_{8}=8 \times 32=256 \mathrm{~g}$
(c) Molar mass of phosphorus molecule, $P_{4}=4 \times 31=124 \mathrm{~g}$
(d) Molar mass of hydrochloric acid, $\mathrm{HCl}=1+35.5=36.5 \mathrm{~g}$
(e) Molar mass of nitric acid, $\mathrm{HNO}_{3}=1+14+3 \times 16=63 \mathrm{~g}$

Page : 44 , Block Name : Exercise
Q7 What is the mass of-
(a) 1 mole of nitrogen atoms?
(b) 4 moles of aluminium atoms (Atomic mass of aluminium $=27$)?
(c) 10 moles of sodium sulphite (Na 2 SO 3)?

Answer. (a) The mass of 1 mole of nitrogen atoms is 14 g .
(b) The mass of 4 moles of aluminium atoms is $(4 \times 27)=108 \mathrm{~g}$
(c) The mass of 10 moles of sodium sulphite is $10 \times 23+32+3 \times 16] \mathrm{g}=10 \times 126 \mathrm{~g}=1260 \mathrm{~g}$

Page : 44 , Block Name : Exercise

Q8 Convert into mole.
(a) 12 g of oxygen gas
(b) 20 g of water
(c) 22 g of carbon dioxide

Answer. (a) 32 g of oxygen gas $=1$ mole
then, 12 g of oxygen gas $=12 / 32$ mole $=0.375$ moles
(b) 18 g of water $=1 \mathrm{~mole}$

Then, 20 of water $=20 / 18$ mole $=1.11$ moles (approx)
(c) 44 g of carbon dioxide $=1 \mathrm{~mole}$

Then, 22 g of carbon dioxide $=22 / 44$ mole $=0.5$ mole
Page : 44 , Block Name : Exercise
Q9 What is the mass of:
(a) 0.2 mole of oxygen atoms?
(b) 0.5 mole of water molecules?

Answer, (a) Mass of one mole of oxygen atoms $=16 \mathrm{~g}$
Then, mass of 0.2 mole of oxygen atoms $=0.216 \mathrm{~g}$
(b) Mass of one mole of water molecule $=18 \mathrm{~g}$

Then, mass of 0.5 mole of water molecules $=0.5 \times 18 \mathrm{~g}=9 \mathrm{~g}$

Page : 44 , Block Name : Exercise

Q10 Calculate the number of molecules of sulphur S_{8} present in 16 g of solid sulphur.

Answer. I mole of solid sulphur $S_{8}=8 \times 32 \mathrm{~g}=256 \mathrm{~g}$
i.e., 256 g of solid sulphur contains $=6.022 \times 10^{23}$ molecules

Then, 16 g of solid sulphur contains $=\frac{6.022 \times 10^{21}}{256} \times 16$ molecules
$=3.76 \times 10^{22}$ molecules

Page : 44 , Block Name : Exercise

Q11 Calculate the number of aluminium ions present in 0.051 g of aluminium oxide.
Answer. 1 mole of aluminium oxide $\left(A l_{2} \mathrm{O}_{3}\right)=2 \times 27+3 \times 16=102 \mathrm{~g}$
I.e., 102 gm of $A l_{2} \mathrm{O}_{3}=6.022 \times 10^{23}$ molecules of $A l_{2} \mathrm{O}_{3}$

Then , 0.051 gm of $A l_{2} \mathrm{O}_{3}$ contains $=\frac{6.022 \times 10^{23}}{102} \times 0.051$ molecules
$=3.011 \times 10^{20}$ molecules of $\mathrm{Al}_{2} \mathrm{O} 3$
The number aluminium ions $\left(\mathrm{Al}^{3+}\right)$ present in one molecules of aluminium oxide is 2 .
Therefore, the number of aluminium ions $\left(\mathrm{Al}^{3+}\right)$ present in
3.011×10^{20} molecules of aluminium oxide $=2 \times 3.011 \times 10^{20}$
$=6.022 \times 10^{20}$

Page : 44 , Block Name : Exercise

