Series : HMJ/5

SET - 3
कोड नं. $55 / 5 / 3$
रोल नं.
Roll No.

Code No.
परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Code on the title page of the answer-book.

नोट		NOTE
(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं।		Please check that this question paper contains 23 printed pages.
(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।	(II)	Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 37 प्रश्न हैं।	(III)	Please check that this question paper contains 37 questions.
(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।	(IV)	Please write down the Serial Number of the question in the answer-book before attempting it.
(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका में कोई उत्तर नहीं लिखेंगे।	(V)	15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

भौतिक विज्ञान (सैद्धान्तिक)
PHYSICS (Theory)

निर्धारित समय: 3 घण्टे
Time allowed : 3 hours

अधिकतम अंक : 70
Maximum Marks : 70

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :

(i) प्रश्न-पत्र चार खंडों में विभाजित किया गया है - क, ख, ग एवंघ।
(ii) प्रश्न-पत्न में 37 प्रश्न है । सभी प्रश्न अनिवार्य हैं।
(iii) खण्ड-क में प्रश्न संख्या 1 से 20 तक अति लघुत्तरीय प्रकार के प्रश्न हैं, प्रत्येक प्रश्न 1 अंक का है।
(iv) खण्ड-ख में प्रश्न संख्या 21 से 27 तक लघुउत्तरीय प्रश्न हैं । प्रत्येक प्रश्न 2 अंक का है।
(v) खण्ड-ग में प्रश्न संख्या 28 से 34 तक दीर्घ उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 3 अंक का है।
(vi) खण्ड-घ में प्रश्न संख्या 35 से 37 तक भी दीर्घ उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न 5 अंक का है।
(vii) कोई समग्र विकल्प नहीं है । तथापि, एक-एक अंक के दो प्रश्नों में, दो-दो अंकों के दो प्रश्नों में, तीनतीन अंकों के एक प्रश्न में तथा पाँच-पाँच अंकों के तीनों प्रश्नों में आंतरिक विकल्प दिया गया है। ऐसे प्रश्नों में केवल एक ही विकल्प का उत्तर लिखिए।
(viii) इसके अतिरिक्त, आवश्यकतानुसार, प्रत्येक खण्ड और प्रश्न के साथ यथोचित निर्देश दिए गए हैं।
(ix) केलकुलेटर अथवा लॉग टेबल के प्रयोग की अनुमति नहीं है।
(x) जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$
\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}
$$

$$
\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}
$$

$$
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}
$$

$$
\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}
$$

$$
\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
$$

इलेक्ट्रॉन का द्रव्यमान $\left(\mathrm{m}_{\mathrm{e}}\right)=9.1 \times 10^{-31} \mathrm{~kg}$
न्यूट्रॉन का द्रव्यमान $=1.675 \times 10^{-27} \mathrm{~kg}$
प्रोटॉन का द्रव्यमान $=1.673 \times 10^{-27} \mathrm{~kg}$
आवोगाद्रो संख्या $=6.023 \times 10^{23}$ प्रति ग्राम मोल
बोल्ट्र्जमान नियतांक $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

General Instructions :

Read the following instructions very carefully and strictly follow them :
(i) This question paper comprises four sections $-A, B, C$ and D.
(ii) There are 37 questions in the question paper. All questions are compulsory.
(iii) Section A: Q. no. 1 to 20 are very short-answer type questions carrying 1 mark each.
(iv) Section $B: Q$. no. 21 to 27 are short-answer type questions carrying 2 marks each.
(v) Section C: Q. no. 28 to 34 are long-answer type questions carrying 3 marks each.
(vi) Section $D: Q$. no. 35 to 37 are also long answer type questions carrying 5 marks each.
(vii) There is no overall choice in the question paper. However, an internal choice has been provided in two questions of one mark, two questions of two marks, one question of three marks and all the three questions of five marks. You have to attempt only one of the choices in such questions.
(viii) However, separate instructions are given with each section and question, wherever necessary.
(ix) Use of calculators and log tables is not permitted.
(x) You may use the following values of physical constants wherever necessary.
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$
$\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
$\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
$\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}$
Mass of electron $\left(m_{e}\right)=9.1 \times 10^{-31} \mathrm{~kg}$
Mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton $=1.673 \times 10^{-27} \mathrm{~kg}$
Avogadro's number $=6.023 \times 10^{23}$ per gram mole
Boltzmann constant $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$

नोट : नीचे दिए गए प्रत्येक प्रश्न में सबसे अधिक उपयुक्त विकल्प को चुनिए :

1. किसी उभयावतल लेंस, जिसकी क्षमता P है, को ऊर्ध्वाधरत: दो सर्वसम समतलावतल लेंसों में विभाजित किया गया है। इसके प्रत्येक भाग की क्षमता होगी
(a) 2 P
(b) $\mathrm{P} / 2$
(c) P
(d) $\mathrm{P} / \sqrt{2}$
1
2. किसी श्रेणी LCR परिपथ का अनुनाद पर शक्ति गुणांक होगा
(a) 1
(b) शून्य
(c) $1 / 2$
(d) $1 / \sqrt{2}$

1
3. यदि आवृत्ति v के फोटॉन दो धात्विक पृष्ठों A और B जिसकी देहली आवृत्तियाँ क्रमश: $v / 2$ और $v / 3$ हैं पर आपतन करती है तो A और B से उत्सर्जित होने वाले इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जाओं का अनुपात होगा
(a) $2: 3$
(b) $3: 4$
(c) $1: 3$
(d) $\sqrt{3}: \sqrt{2}$

1
4. किसी बन्द गाउसीय पृष्ठ से गुजरने वाला विद्युत फ्लक्स किस पर निर्भर करता है ?
(a) नेट परिबद्ध आवेश तथा माध्यम की विद्युतशीलता
(b) नेट परिबद्ध आवेश, माध्यम की विद्युतशीलता तथा गाउसीय पृष्ठ का साइज़
(c) केवल नेट परिबद्ध आवेश
(d) केवल माध्यम की विद्युतशीलता
5. कोई आवेशित कण विभवान्तर V से त्वरित होने के पश्चात् किसी एकसमान चुम्बकीय क्षेत्र में प्रवेश करता है और त्रिज्या r के वृत्त में गमन करता है । यदि विभवान्तर V को दो गुना कर दिया जाए तो वृत्त की त्रिज्या हो जाएगी
(a) 2 r
(b) $\sqrt{2} \mathrm{r}$
(c) 4 r
(d) $\mathrm{r} / \sqrt{2}$

1
6. किसी LED द्वारा उत्सर्जित प्रकाश की तरंगदैर्ध्य तथा तीव्रता निर्भर करती है -
(a) अग्रदिशिक बायस और अर्धचालक का ऊर्जा अन्तराल पर
(b) अर्धचालक का ऊर्जा अन्तराल और प्रतीप बायस पर
(c) केवल ऊर्जा अन्तराल पर
(d) केवल अग्रदिशिक बायस पर

SECTION : A

Note : Select the most appropriate option from those given below each question.

1. A biconcave lens of power P vertically splits into two identical plano concave parts. The power of each part will be
(a) 2 P
(b) $\mathrm{P} / 2$
(c) P
(d) $\mathrm{P} / \sqrt{2}$
2. The power factor of a series LCR circuit at resonance will be
(a) 1
(b) 0
(c) $1 / 2$
(d) $1 / \sqrt{2}$

1
3. If photons of frequency v are incident on the surfaces of metals. A \& B of threshold frequencies $v / 2$ and $v / 3$ respectively, the ratio of the maximum kinetic energy of electrons emitted from A to that from B is
(a) $2: 3$
(b) $3: 4$
(c) $1: 3$
(d) $\sqrt{3}: \sqrt{2}$

1
4. The electric flux through a closed Gaussian surface depends upon
(a) Net charge enclosed and permittivity of the medium
(b) Net charge enclosed, permittivity of the medium and the size of the Gaussian surface
(c) Net charge enclosed only
(d) Permittivity of the medium only
5. A charge particle after being accelerated through a potential difference ' V ' enters in a uniform magnetic field and moves in a circle of radius r. If V is doubled, the radius of the circle will become
(a) $2 r$
(b) $\sqrt{2} r$
(c) 4 r
(d) $r / \sqrt{2}$

1
6. The wavelength and intensity of light emitted by a LED depend upon
(a) forward bias and energy gap of the semiconductor
(b) energy gap of the semiconductor and reverse bias
(c) energy gap only
(d) forward bias only
7. किसी आवेशित कण के रैखिक संवेग (p) का उसकी द-ब्राग्ली तरंगदैर्ध्य (λ) के साथ सही विचरण को दर्शाने वाला ग्राफ है -

(a)

(b)

(c)

(d)

1
8. किसी श्रेणी LCR a.c. परिपथ की वरणक्षमता तब अधिक होती है जब
(a) L बड़ा है तथा R बड़ा है।
(b) L छोटा है तथा R छोटा है।
(c) L बड़ा है तथा R छोटा है।
(d) $L=R$
9. फोटो डायोड का उपयोग किसके संसूचन के लिए किया जाता है ?
(a) रेडियो तरंगें
(b) गामा किरणें
(c) अवरक्त किरणें
(d) प्रकाशिक सिगनल
10. ब्रूस्टर कोण θ और सघन माध्यम में प्रकाश की चाल v के बीच का संबंध है -
(a) $v \tan \theta=c$
(b) $\mathrm{c} \tan \theta=v$
(c) $v \sin \theta=c$
(d) $\mathrm{c} \sin \theta=v$

1

नोट : यथोचित उत्तर से रिक्त स्थान की पूर्ति कीजिए।
11. किसी संधि डायोड की किसी प्रत्यावर्ती वोल्टता को \qquad की क्षमता इस तथ्य पर निर्भर करती है कि वह केवल अग्रदिशिक बायस में होने पर ही धारा को प्रवाहित होने देता है।
12. किसी बिन्दु आवेश को किसी खोखले चालक गोले जिसकी भीतरी त्रिज्या ' r ' तथा बाहरी त्रिज्या ' $2 r$ ' है के केन्द्र पर रखा गया है । इस गोले के भीतरी पृष्ठ पर पृष्ठीय आवेश घनत्व और बाहरी पृष्ठ पर पृष्ठीय आवेश घनत्व का अनुपात होगा \qquad .
7. The graph showing the correct variation of linear momentum (p) of a charge particle with its de-Broglie wavelength (λ) is -

(a)

(b)

(c)

(d)

1
8. The selectivity of a series LCR a.c. circuit is large, when
(a) L is large and R is large
(b) L is small and R is small
(c) L is large and R is small
(d) $L=R$
9. Photo diodes are used to detect
(a) radio waves
(b) gamma rays
(c) IR rays
(d) optical signals

1
10. The relationship between Brewester angle ' θ ' and the speed of light ' v ' in the denser medium is -
(a) $v \tan \theta=\mathrm{c}$
(b) $\mathrm{c} \tan \theta=v$
(c) $v \sin \theta=c$
(d) $\mathrm{c} \sin \theta=v$

1

Note : Fill in the blanks with appropriate answer.
11. The ability of a junction diode to \qquad an alternating voltage, is based on the fact that it allows current to pass only when it is forward biased.
12. A point charge is placed at the centre of a hollow conducting sphere of internal radius ' r ' and outer radius ' $2 r$ '. The ratio of the surface charge density of the inner surface to that of the outer surface will be \qquad -
13. पदार्थों C, Si और Ge का \qquad गुणधर्म इनके चालक बैण्ड और संयोजकता बैण्ड के बीच ऊर्जा अन्तराल पर निर्भर करता है।

1
14. असमान अनुप्रस्थ-काट क्षेत्रफल के किसी कॉपर के तार को किसी d.c. बैटरी से संयोजित किया गया है। इस तार के अनुदिश नियत रहने वाली भौतिक राशि \qquad है।
15. भौतिक राशि \qquad का SI मात्रक $\mathrm{NC}^{-1} \mathrm{~m}$ है ।

नोट : निम्नलिखित के उत्तर दीजिए :
16. धनात्मक X -अक्ष के अनुदिश संचरण करने वाली किसी विद्युत-चुम्बकीय तरंग, जिसका विद्युत क्षेत्र Y -अक्ष के अनुदिश है, के क्षेत्र आरेख का चित्रण कीजिए।
17. यंग के द्विझिरी प्रयोग में (i) संपोषी और (ii) विनाशी व्यतिकरण के लिए पथान्तर की शर्त लिखिए।
18. किसी कुण्डली से प्रवाहित धारा में परिवर्तन की दर के साथ उसमें प्रेरित emf के विचरण को दर्शाने के लिए ग्राफ खींचिए।

अथवा

emf के शिखर मान E_{0} तथा कोणीय आवृत्ति (ω) के किसी ac स्रोत के सिरों से प्रेरक (L), संधारित्र (C) तथा प्रतिरोधक (R) का कोई श्रेणी संयोजन जुड़ा है । कोणीय आवृत्ति (ω) के साथ इस परिपथ की प्रतिबाधा में विचरण को दर्शाने के लिए ग्राफ खींचिए।
19. किसी चल कुण्डली गैल्वैनोमीटर की "धारा सुग्राहिता" की परिभाषा लिखिए।
13. The \qquad , a property of materials C, Si and Ge depends upon the energy gap between their conduction and valence bands.
14. A copper wire of non-uniform area of cross-section is connected to a d.c. battery. The physical quantity which remains constant along the wire is
\qquad
15. The physical quantity having SI unit $\mathrm{NC}^{-1} \mathrm{~m}$ is \qquad .

Note: Answer the following :
16. Depict the fields diagram of an electromagnetic wave propagating along positive X -axis with its electric field along Y -axis.
17. Write the conditions on path difference under which (i) constructive
(ii) destructive interference occur in Young's double slit experiment.
18. Plot a graph showing variation of induced e.m.f. with the rate of change of current flowing through a coil.

OR

A series combination of an inductor (L), capacitor (C) and a resistor (R) is connected across an ac source of emf of peak value E_{0} and angular frequency (ω). Plot a graph to show variation of impedance of the circuit with angular frequency (ω).
19. Define the term 'current sensitivity' of a moving coil galvanometer.
20. $+x$ दिशा के अनुदिश कोई इलेक्ट्रॉन गतिमान है। यह इलेक्ट्रॉन आरेख में दर्शाए अनुसार $-z$ दिशा में दिशिक किसी एकसमान चुम्बकीय क्षेत्र $\overrightarrow{\mathrm{B}}$ में प्रवेश करता है। इस क्षेत्र में प्रवेश करने पर इलेक्ट्रॉन के प्रक्षेप-पथ की आकृति खींचिए।

अथवा
आरेख में दर्शाए अनुसार किसी धारावाही सीधे लम्बे तार AB के निकट कोई धारावाही वर्गाकार पाश MNOP रखा है। तार तथा पाश एक ही तल में स्थित हैं। यदि पाश तार की दिशा में कोई नेट बल F अनुभव करता है, तो पाश की भुजा ' NO ' पर बल का परिमाण ज्ञात कीजिए।

1

खण्ड : ख
21. रदरफोर्ड के परमाणु मॉडल की कमियाँ लिखिए। व्याख्या कीजिए कि बोर के परमाणु मॉडल के अभिगृहीतों द्वारा इन कमियों को दूर किया गया।
20. An electron moves along $+x$ direction. It enters into a region of uniform magnetic field $\overrightarrow{\mathrm{B}}$ directed along -z direction as shown in fig. Draw the shape of trajectory followed by the electron after entering the field.

OR

A square shaped current carrying loop MNOP is placed near a straight long current carrying wire AB as shown in the fig. The wire and the loop lie in the same plane. If the loop experiences a net force F towards the wire, find the magnitude of the force on the side 'NO' of the loop.

SECTION : B

21. Write shortcomings of Rutherford atomic model. Explain how these were overcome by the postulates of Bohr's atomic model.
22. आरेख में फोटोइलेक्ट्रॉन के लिए निरोधी विभव $\left(\mathrm{V}_{\mathrm{o}}\right)$ और $1 / \lambda$ के बीच दो धातुओं A और B के लिए ग्राफ दर्शाया गया है, यहाँ λ आपतित प्रकाश की तरंगदैर्ध्य है।

(a) इस ग्राफ से प्लांक नियतांक का मान किस प्रकार निर्धारित किया जाता है ?
(b) यदि प्रकाश स्रोत तथा धातु A के पृष्ठ के बीच की दूरी में वृद्धि कर दी जाए, तो इससे उत्सर्जित इलेक्ट्रॉनों के लिए निरोधी विभव किस प्रकार प्रभावित होगा ? अपने उत्तर की पुष्टि कीजिए।
23. आरेख में दर्शाए अनुसार दो पोलरॉयड शीटों P_{1} और P_{2} से होकर किसी सोडियम लैम्प (S) का प्रकाश गुजरता है । (i) P_{1} से पारगमित होने पर तथा (ii) पोलरॉयड P_{1} को प्रकाश के संचरण की दिशा के परित: घूर्णन कराने पर P_{2} से पारगमित प्रकाश की तीव्रता पर क्या प्रभाव पड़ेगा ? दो प्रकरणों में अपने उत्तरों की पुष्टि कीजिए।

अथवा
प्रकाश के तरंगाग्र की परिभाषा लिखिए। आरेख में दर्शाए अनुसार सघन माध्यम (1) से विरल माध्यम (2) में संचरण करता कोई समतल तरंगाग्र AB इन दोनों माध्यमों को पृथक् करने वाले पृष्ठ $\mathrm{P}_{1} \mathrm{P}_{2}$ पर आपतन करता है।

हाइगेन के सिद्धान्त का उपयोग करते हुए द्वितीयक तरंगिका खींचिए तथा इस आरेख में अपवर्तित तरंगाग्र प्राप्त कीजिए ।

22. Figure shows the stopping potential $\left(\mathrm{V}_{0}\right)$ for the photo electron versus $(1 / \lambda)$ graph, for two metals A and B, λ being the wavelength of incident light.

(a) How is the value of Planck's constant determined from the graph?
(b) If the distance between the light source and the surface of metal A is increased, how will the stopping potential for the electrons emitted from it be effected ? Justify your answer.
23. Light from a sodium lamp (S) passes through two polaroid sheets P_{1} and P_{2} as shown in fig. What will be the effect on the intensity of the light transmitted (i) by P_{1} and (ii) by P_{2} on rotating polaroid P_{1} about the direction of propagation of light? Justify your answer in both cases.

OR

Define the term 'wave front of light'. A plane wave front AB propagating from denser medium (1) into a rarer medium (2) is incident on the surface $\mathrm{P}_{1} \mathrm{P}_{2}$ separating the two media as shown in fig.

Using Huygen's principle, draw the secondary wavelets and obtain the refracted wave front in the diagram.

24. नीचे दी गयी संलयन अभिक्रिया
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3.27 \mathrm{MeV}$
को लेकर यह परिकलित कीजिए कि 2.0 kg ड्यूटेरेयम का संलयन कितने वर्ष तक 800 W के विद्युत लैम्प को चमकीला बनाए रखेगा ?
25. किसी एकल झिरी विवर्तन प्रयोग में झिरी की चौड़ाई में कमी की गयी है। केन्द्रीय चमकीले बैण्ड के (i) साइज़, (ii) तीव्रता पर क्या प्रभाव पड़ेगा ? अपने उत्तर की पुष्टि कीजिए।
26. किसी एकसमान विद्युत क्षेत्र में रखे किसी विद्युत द्विध्रुव पर लगने वाले बल-आघूर्ण के लिए व्यंजक व्युत्पन्न कीजिए। इस विद्युत क्षेत्र में द्विध्रुव के उस अभिविन्यास की पहचान कीजिए जिसमें यह स्थायी संतुलन प्राप्त कर लेता है।

अथवा

किसी dc बैटरी के सिरों से संयोजित किसी संधारित्र में भंडारित ऊर्जा के लिए व्यंजक प्राप्त कीजिए। इस प्रकार संधारित्र के ऊर्जा घनत्व की परिभाषा लिखिए।
27. मुक्त आकाश में गामा किरणें और रेडियो तरंगें समान वेग से गमन करती हैं । उत्पत्ति और मुख्य अनुप्रयोगों के पदों में इन दोनों के बीच विभेदन कीजिए।

खण्ड: ग

28. (a) किसी रेडियोएक्टिव पदार्थ की अर्धायु की परिभाषा लिखिए।
(b) अल्फा-क्षय करते ${ }_{92}^{238} \mathrm{U}$ की अर्धायु 4.5×10^{9} वर्ष है । ${ }_{92}^{238} \mathrm{U}$ के 5 g नमूने की सक्रियता परिकलित कीजिए।
29. किसी p -n संधि डायोड में विभव रोधिका तथा अवक्षय क्षेत्र बनने की व्याख्या कीजिए। अवक्षय क्षेत्र की चौड़ाई पर अग्रदिशिक बायस अनुप्रयुक्त करने का क्या प्रभाव होता है ?

अथवा
फोटो डायोड किसे कहते हैं ? संक्षेप में इसकी कार्यविधि की व्याख्या कीजिए तथा इसका V-I अभिलाक्षणिक खींचिए।
30. हाइड्रोजन परमाणु की द्वितीय उत्तेजित अवस्था से संबद्ध दे-ब्राग्ली तरंगदैर्ध्य परिकलित कीजिए। हाइड्रोजन परमाणु की निम्नतम अवस्था ऊर्जा 13.6 eV है।
24. Calculate for how many years will the fusion of 2.0 kg deuterium keep 800 W electric lamp glowing. Take the fusion reaction as
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+3.27 \mathrm{MeV}$
25. In a single slit diffraction experiment, the width of the slit is decreased. How will the (i) size (ii) intensity of the central bright band be affected. Justify your answer.
26. Derive the expression for the torque acting on an electric dipole, when it is held in a uniform electric field. Identify the orientation of the dipole in the electric field, in which it attains a stable equilibrium.

OR
Obtain the expression for the energy stored in a capacitor connected across a dc battery. Hence define energy density of the capacitor.
27. Gamma rays and radio waves travel with the same velocity in free space. Distinguish between them in terms of their origin and the main application.

SECTION : C

28. (a) Define the term 'half-life' of a radioactive substance.
(b) The half life of ${ }_{92}^{238} \mathrm{U}$ undergoing alpha decay is 4.5×10^{9} years. Calculate the activity of 5 g sample of ${ }_{92}^{238} \mathrm{U}$.
29. Explain the formation of potential barrier and depletion region in a p-n junction diode. What is effect of applying forward bias on the width of depletion region?

OR

What is photo diode ? Briefly explain its working and draw its V-I characteristics.
30. Calculate the de-Broglie wavelength associated with the electron in the $2^{\text {nd }}$ excited state of hydrogen atom. The ground state energy of the hydrogen atom is 13.6 eV .
31. (a) किसी चालक के विद्युत प्रतिरोध और प्रतिरोधकता के बीच विभेदन कीजिए।
(b) किसी d.c. बैटरी के सिरों से धातु की दो छड़ें, जिनमें प्रत्येक की लम्बाई L, अनुप्रस्थ-काट क्षेत्रफल A_{1} और A_{2}, प्रतिरोधकताएँ ρ_{1} और ρ_{2} हैं, पार्श्व में संयोजित हैं । इस संयोजन की प्रभावी संयोजकता के लिए व्यंजक प्राप्त कीजिए।
32. (a) दो बिन्दु आवेश $+\mathrm{Q}_{1}$ तथा $-\mathrm{Q}_{2}$ एक दूसरे से r दूरी पर स्थित हैं। किसी तीसरे आवेश Q_{3} को इन दोनों आवेशों को मिलाने वाली रेखा के मध्य बिन्दु पर लाने में किए जाने वाले कार्य की मात्रा के लिए व्यंजक प्राप्त कीजिए।
(b) दो आवेशों को जोड़ने वाली रेखा पर स्थित किसी आवेश $+\mathrm{Q}_{1}$ से कितनी दूरी पर $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right.$ और r के पदों में) यह कार्य शून्य होगा ?
33. किसी प्रकाशिक यंत्र में 100 D क्षमता के अभिदृश्यक लेंस तथा 40 D क्षमता के नेत्रिका लेंस का उपयोग किया जाता है । जब इस यंत्र की ट्यूब की लम्बाई 20 cm रखी जाती है, तो अंतिम प्रतिबिम्ब अनन्त पर बनता है।
(a) इस यंत्र की पहचान कीजिए।
(b) इस यंत्र द्वारा उत्पन्न कोणीय आवर्धन परिकलित कीजिए।
34. जब अभिलम्बवत कार्यरत किसी बाह्य चुम्बकीय क्षेत्र से किसी 10Ω प्रतिरोध और $10 \mathrm{~cm}^{2}$ क्षेत्रफल के पाश को हटाया जाता है तो समय के साथ इस पाश में प्रेरित धारा के विचरण को ग्राफ में दर्शाया गया है।

ज्ञात कीजिए :
(i) इस पाश से गुजरने वाला कुल आवेश
(ii) इस पाश से गुजरने वाले चुंबकीय फ्लक्स में परिवर्तन
(iii) अनुप्रयुक्त चुम्बकीय क्षेत्र का परिमाण
31. (a) Differentiate between electrical resistance and resistivity of a conductor.
(b) Two metallic rods, each of length L, area of cross A_{1} and A_{2}, having resistivities ρ_{1} and ρ_{2} are connected in parallel across a d.c. battery. Obtain the expression for the effective resistivity of this combination.
32. (a) Two point charges $+\mathrm{Q}_{1}$ and $-\mathrm{Q}_{2}$ are placed r distance apart. Obtain the expression for the amount of work done to place a third charge Q_{3} at the midpoint of the line joining the two charges.
(b) At what distance from charge $+Q_{1}$ on the line joining the two charges (in terms of $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and r) will this work done be zero.
33. An optical instrument uses an objective lens of power 100 D and an eyepiece of power 40 D . The final image is formed at infinity when the tube length of the instrument is kept at 20 cm .
(a) Identify the optical instrument.
(b) Calculate the angular magnification produced by the instrument.
34. When a conducting loop of resistance 10Ω and area $10 \mathrm{~cm}^{2}$ is removed from an external magnetic field acting normally, the variation of induced current in the loop with time is shown in the figure.

Find the
(i) total charge passed through the loop.
(ii) change in magnetic flux through the loop.
(iii) magnitude of the magnetic field applied.

खण्ड : घ
35. (a) यह दर्शाइए कि कोई आदर्श प्रेरक किसी ac परिपथ में कोई शक्ति क्षय नहीं करता है।
(b) आरेख में 100 V के परिवर्ती आवृत्ति के स्रोत की आवृत्ति f के साथ किसी प्रेरक के प्रेरित प्रतिघात $\left(\mathrm{X}_{\mathrm{L}}\right)$ में विचरण को दर्शाया गया है।

(i) प्रेरक का स्वप्रेरकत्व परिकलित कीजिए।
(ii) जब इस प्रेरक का उपयोग $300 \mathrm{~s}^{-1}$ पर श्रेणी में अज्ञात मान के किसी संधारित्र तथा 10Ω के प्रतिरोधक के साथ किया जाता है तो परिपथ में अधिकतम शक्ति क्षय होता है। संधारित्र की धारिता परिकलित कीजिए।

अथवा

(a) लम्बाई l के किसी चालक को किसी एकसमान चुम्बकीय क्षेत्र B के लम्बवत तल में उसके किसी एक सिरे के परित: नियत कोणीय चाल ω से घूर्णित कराया गया है । इस चालक के सिरों के बीच प्रेरित emf में (i) कोणीय चाल (ω) तथा (ii) चालक की लम्बाई (l) के साथ होने वाले विचरण को दर्शाने के लिए ग्राफ खींचिए।
(b) 1 cm और 20 cm त्रिज्या के दो संकेन्द्री वृत्ताकार पाश समाक्ष रखे हैं।
(i) इस व्यवस्था का अन्योन्य प्रेरकत्व ज्ञात कीजिए।
(ii) यदि बाहरी पाश से प्रवाहित धारा में $5 \mathrm{~A} / \mathrm{ms}$ की दर से परिवर्तन किया जाए तो भीतरी पाश में प्रेरित emf ज्ञात कीजिए। यह मानिए कि भीतरी पाश पर चुम्बकीय क्षेत्र एकसमान है।

SECTION : D

35. (a) Show that an ideal inductor does not dissipate power in an ac circuit.
(b) The variation of inductive reactance $\left(\mathrm{X}_{\mathrm{L}}\right)$ of an inductor with the frequency (f) of the ac source of 100 V and variable frequency is shown in the fig.

(i) Calculate the self-inductance of the inductor.
(ii) When this inductor is used in series with a capacitor of unknown value and a resistor of 10Ω at $300 \mathrm{~s}^{-1}$, maximum power dissipation occurs in the circuit. Calculate the capacitance of the capacitor.

OR

(a) A conductor of length ' l ' is rotated about one of its ends at a constant angular speed ' ω ' in a plane perpendicular to a uniform magnetic field B. Plot graphs to show variations of the emf induced across the ends of the conductor with (i) angular speed ω and (ii) length of the conductor l.
(b) Two concentric circular loops of radius 1 cm and 20 cm are placed coaxially.
(i) Find mutual inductance of the arrangement.
(ii) If the current passed through the outer loop is changed at a rate of $5 \mathrm{~A} / \mathrm{ms}$, find the emf induced in the inner loop. Assume the magnetic field on the inner loop to be uniform.
36. (a) समविभव पृष्ठों के दो महत्त्वपूर्ण लक्षण लिखिए।
(b) किसी पतले वृत्ताकार छल्ले जिसकी त्रिज्या r है, को एकसमान आवेशित किया है ताकि उसका रैखिक आवेश घनत्व λ हो जाए। इस छल्ले के अनुदिश छल्ले से x दूरी पर स्थित किसी बिन्दु P पर विद्युत क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए। इस प्रकार यह सिद्ध कीजिए कि अधिक दूरियों $(x \gg \mathrm{r})$ पर यह छल्ला एक बिन्दु आवेश की भाँति व्यवहार करता है।

अथवा

(a) स्थिर-विद्युत का गाउस का नियम लिखिए तथा किसी पतले एकसमान आवेशित लम्बे सीधे तार
(रैखिक आवेश घनत्व λ) के कारण इस तार से दूरी r पर स्थित किसी बिन्दु पर विद्युत क्षेत्र के लिए व्यंजक व्युत्पन्न कीजिए।
(b) किसी क्षेत्र में विद्युत क्षेत्र का परिमाण (NC^{-1} में) दूरी $\mathrm{r}(\mathrm{m}$ में) के साथ नीचे दिए अनुसार

विचरण करता है :

$$
\mathrm{E}=10 \mathrm{r}+5
$$

किसी बिन्दु $r=1 \mathrm{~m}$ से किसी अन्य बिन्दु $\mathrm{r}=10 \mathrm{~m}$ तक गति कराने में विद्युत विभव में कितनी वृद्धि हो जाएगी ?
37. (a) किसी दर्पण की फोकस दुरी की परिभाषा लिखिए। किरण आरेख की सहायता से किसी दर्पण की फोकस दूरी और वक्रता त्रिज्या के बीच संबंध प्राप्त कीजिए।
(b) $\sqrt{3}$ अपवर्तनांक के किसी काँच के प्रिज्म ABC के फलक AC पर अभिलम्बवत आपतित किसी प्रकाश किरण का निर्गत कोण (e) परिकलित कीजिए। यदि वायु के स्थान पर प्रकाश किरण प्रिज्म से 1.3 अपवर्तनांक के किसी द्रव में निर्गत करे, तो निर्गत कोण में क्या गुणात्मक परिवर्तन होगा ?

अथवा
36. (a) Write two important characteristics of equipotential surfaces.
(b) A thin circular ring of radius r is charged uniformly so that its linear charge density becomes λ. Derive an expression for the electric field at a point P at a distance x from it along the axis of the ring. Hence, prove that at large distances ($x \gg \mathrm{r}$), the ring behaves as a point charge.

OR

(a) State Gauss's law on electrostatics and derive an expression for the electric field due to a long straight thin uniformly charged wire (linear charge density λ) at a point lying at a distance r from the wire.
(b) The magnitude of electric field (in NC^{-1}) in a region varies with the distance $r($ in m) as

$$
\mathrm{E}=10 \mathrm{r}+5
$$

By how much does the electric potential increase in moving from point at $\mathrm{r}=1 \mathrm{~m}$ to a point at $\mathrm{r}=10 \mathrm{~m}$.
37. (a) Define the term 'focal length of a mirror'. With the help of a ray diagram, obtain the relation between its focal length and radius of curvature.
(b) Calculate the angle of emergence (e) of the ray of light incident normally on the face AC of a glass prism ABC of refractive index $\sqrt{3}$. How will the angle of emergence change qualitatively, if the ray of light emerges from the prism into a liquid of refractive index 1.3 instead of air?

OR
(a) टेलीस्कोप की विभेदन क्षमता की परिभाषा लिखिए। निम्नलिखित में वृद्धि करने पर विभेदन क्षमता पर क्या प्रभाव पड़ेगा ?
(i) उपयोग किए गए प्रकाश की तरंगदैर्ध्य ।
(ii) अभिदृश्यक लेंस का व्यास।

अपने उत्तरों की पुष्टि कीजिए।
(b) कोई पर्दा किसी बिम्ब से 80 cm दूरी पर रखा है । किसी उत्तल लेंस को बिम्ब और पर्दे के बीच रखने पर लेंस की दो विभिन्न स्थितियों पर, जो एक दूसरे से 20 cm की दूरी पर हैं, बिम्ब का पर्दे पर प्रतिबिम्ब बनता है। लेंस की फोकस दूरी निर्धारित कीजिए।
(a) Define the term 'resolving power of a telescople'. How will the resolving power be effected with the increase in
(i) Wavelength of light used.
(ii) Diameter of the objective lens.

Justify your answers.
(b) A screen is placed 80 cm from an object. The image of the object on the screen is formed by a convex lens placed between them at two different locations separated by a distance 20 cm . Determine the focal length of the lens.

回回酔
回辞者

