NCERT

SOLUTIONS

CLASS - 8TH

aglasem.com

Class: 8th
Subject: Maths
Chapter: 16
Chapter Name : Playing with Numbers

Exercise 16.1

Q1 Find the values of the letters in the following and give reasons for the steps involved.
3A
$+25$
B2

Answer. The addition Of A and 5 is giving 2 i.e., a number whose ones digit is 2 . This is possible only when digit A is 7 . In that case, the addition of $A(7)$ and 5 will give 12 and thus, 1 will be the carry for the next step. In the next Step, $1+3+2=6$ Therefore, the addition is as follows.

37
$\begin{array}{r}+25 \\ \hline 62\end{array}$
Clearly, B is 6.
Hence, A and B are 7 and 6 respectively.

Page : 255 , Block Name : Exercise 16.1
Q2 Find the values of the letters in the following and give reasons for the steps involved.

Answer. The addition of A and 8 is giving 3 i.e., a number whose ones digit is 3 . This is possible only when digit A is 5 . In that case, the addition of A and 8 will give 13 and thus, 1 will be the carry for the next step. In the next step, $1+4+9=14$
Therefore, the addition is as follows.
45
$\begin{array}{r} \\ +\quad 98 \\ \hline 1\end{array}$
143
Clearly, B and C are 4 and 1 respectively.
Hence, A, B, and C are 5, 4, and 1 respectively.

Page : 255 , Block Name : Exercise 16.1

Q3 Find the values of the letters in the following and give reasons for the steps involved

Answer. The multiplication of A With A itself gives a number whose ones digit iS A again. This happens only when $A=1,5$, or 6 .
If $\mathrm{A}=1$, then the multiplication Will be 11×11. However. here the tens digit given as 9 .
Therefore, $\mathrm{A}=1$ is not possible. Similarly, if $\mathrm{A}=5$, then the multiplication be $15 \times 5=75$. Thus. $\mathrm{A}=$ 5 is also not possible.
If we take $A=6$, then $16 \times 6=96$. Therefore. A should be 6 .
The multiplication is as follows:

16
$\times \quad 6$
96

Hence the value of A is 6 .

Page : 255 , Block Name : Exercise 16.1

Q4 Find the values of the letters in the following and give reasons for the steps involved
A B

$+\quad 37$
6 A

Answer. The addition Of A and 3 is giving 6. There can be two cases.
(1) First step is not producing a carry

In that case, A comes to be 3 as $3+3=6$. Considering the first step in which the addition of B and 7 is giving A (i.e., 3), B should be a number such that the units digit of this addition comes to be 3 . It is possible only when $3=6$. In this case, $A=6+7=13$. However, A is a single digit number. Hence, it is not possible.
(2) First Step is producing a carry In that case, A comes to be 2 as $1+2+3-6$. Considering the first step in which
the addition of B and 7 is giving A (i.e., 2), a should be a number such that the units digit of this addition comes to be 2 . It is possible only when a -5 and $5+7=12$.

25
$+\quad 37$
62

Hence, the values of A and B are 2 and 5 respectively.

Page : 256, Block Name : Exercise 16.1

Q5 Find the values of the letters in the following and give reasons for the steps involved.
AB

$\times \quad 3$
CAB

Answer. The multiplication of 3 and B gives a number whose ones digit is B again.
Hence, B must be O or 5 .
Let a is 5 .

Multiplication of first step $=3 \times 5-15$
1 will be a carry for the next step.
h ave, $3 \times \mathrm{A}+1$ = CA
This is not possible for any value of A.
Hence, B must be O only. If B O, then there will be no carry for the next step.
We should obtain, $3 \times \mathrm{A}-\mathrm{CA}$
That is, the one's digit of $3 \times \mathrm{A}$ should be A . This is possible when $\mathrm{A}=5$ or 0 .
However, A cannot be 0 as $A B$ is a two-digit number.
Therefore, A must be 5 only. The multiplication is as follows.
50
$\begin{array}{r}\times \quad 3 \\ \hline 150\end{array}$
Hence, the values of A, B, and C are $5, \mathrm{O}$, and 1 respectively.

Page : 256 , Block Name : Exercise 16.1
Q6 Find the values of the letters in the following and give reasons for the steps involved.
AB
$\begin{array}{r}\times \quad 5 \\ \hline \text { CAB }\end{array}$

Answer. The multiplication of 3 and 5 is giving a number whose ones digit is B again. This is possible when B 5 Or B O only.
In case of $3=5$, the product, $B \times 5=5 \times 5=25$
2 will be a carry for the next Step.
We have, $5 \times \mathrm{A}+2=\mathrm{CA}$, which is possible for $\mathrm{A}=2$ or 7
The multiplication is as follows.

$$
\begin{array}{r}
25 \\
\times 5 \\
\hline 125
\end{array} \begin{array}{r}
75 \\
\times \quad 5 \\
\hline
\end{array}
$$

If $B=0$
$\mathrm{B} \times 5=\mathrm{B} \Rightarrow 0 \times 5=0$
There will not be any carry in this step.
In the next step, $5 \times \mathrm{A}=\mathrm{CA}$
It can happen only when $A=5$ or $A=0$
However, A cannot be 0 as AB is a two-digit number. Hence, A can be 5 only. The multiplication is as follows.

50
$\begin{array}{r}\times \quad 5 \\ \hline 250\end{array}$
Hence, there are 3 possible values of A, B, and C .
(i) $5, \mathrm{O}$, and 2 respectively
(ii) 2,5 , and 1 respectively
(iii) 7, 5, and 3 respectively

Q7 Find the values of the letters in the following and give reasons for the steps involved.
AB

$\times \quad 6$
BBB

Answer. The multiplication of 6 and B gives a number whose one's digit is B again.
It is possible only when $B=0,2,4,6$, or 8
If $\mathrm{B}=0$ then the product will be 0 . Therefore, this value of B is not possible.
If $B=2$, then $B \times 6=12$ and 1 will be a carry for the next step.
$6 \mathrm{~A}+1=\mathrm{BB}=226 \mathrm{~A} \Rightarrow 21$ and hence, any integer value of A is not possible.
If $B=6$, then $B \times 6=36$ and 3 will be a carry for the next Step.
$6 A=3=B B=66=>6 A=63$ and hence, any integer value of A is not possible.
, then $\mathrm{B} \times 648$ and 4 will be a carry for the next step.
$6 \mathrm{~A}+4=\mathrm{BB}=6 \mathrm{~A}=>84$ and hence, $\mathrm{A}=14$. However, A is a single digit number. Therefore, this value of A is not possible.
If $B=4$, then $B \times 6=24$ and 2 will be a carry for the next step.
$6 \mathrm{~A}+2=\mathrm{BB}=>6 \mathrm{~A}=42$ and hence, $\mathrm{A}=7$
The multiplication is as follows.
74
$\begin{array}{r}\times \quad 6 \\ \hline 444\end{array}$
Hence, the values Of A and B are 7 and 4 respectively.
Page : 256, Block Name : Exercise 16.1
Q8 Find the values Of the letters in the following and give reasons for the steps involved.
Al
$\begin{array}{r}+1 \mathrm{~B} \\ \hline \mathrm{~B} 0\end{array}$

Answer. The addition of 1 and B is giving 0 i.e., a number whose ones digits is 0 . This is possible only when digit B is 9 . In that case, the addition of 1 and B will give 10 and thus, 1 will be the carry for the next step. In the next step,
$1+A+1=B$
Clearly, A is 7 as $1+7+1=9=B$
Therefore, the addition is as follows.

$$
\begin{array}{r}
71 \\
+\quad 19 \\
\hline 90
\end{array}
$$

Hence, the values of A and B are 7 and 9 respectively.

Page : 256 , Block Name : Exercise 16.1

Q9 Find the values of the letters in the following and give reasons for the steps involved.
2 AB
$+\mathrm{AB} 1$
B18

Answer. The addition of B and 1 is giving 8 i.e., a number whose ones digits is 8 . This is possible only when digit B is 7 . In that case, the addition of B and 1 will give 8 . In the next step, $\mathrm{A}+\mathrm{B}=1$;
Clearly, A is 4.
$4+7=11$ and 1 will be a carry for the next step. In the next step,
$1+2+A=B$
$1+2+4=7$
Therefore, the addition is as follows.
247
$+471$
718
Hence, the values of A and B are 4 and 7 respectively.

Page : 256 , Block Name : Exercise 16.1

Q10 Find the values of letters in the following and give reasons for the steps involved.
12 A
$\begin{array}{r}+6 \mathrm{AB} \\ \hline \mathrm{A} 09\end{array}$

Answer. The addition of A and 3 is giving 9 i.e., a number whose ones digits is 9 . The sum can be 9 only as the sum of two single digit numbers cannot be 19 . Therefore, there will not be any carry in this step.
In the next step, $2+\mathrm{A}=0$
It is possible only when $\mathrm{A}=8$
$2+8=10$ and 1 will be the carry for the next step.
Clearly, A is 8 . We know that the addition of A and B is giving 9 . As A is 8 , therefore, Therefore, the addition is as follows. 128

$+\quad 681$

809

Page : 256 , Block Name : Exercise 16.1

Exercise 16.2

Q1 If $21 y 5$ is a multiple of 9 , where y is a digit, what is the value of y ?

Answer. If a number is a multiple of 9 , then the sum of its digits will be divisible by 9 .
Sum of digits of $21 \mathrm{y} 5=2+1+y+5=8+y$
Hence, $8+y$ should be a multiple of 9 .
This is possible when $8+y$ is any one of these numbers $0,9,18,27$, and so on However, since y is a single digit number, this sum can be 9 only. Therefore, y should be 1 only.

Page : 260 , Block Name : Exercise 16.2

Q2 If $31 z 5$ is a multiple of 9 , where z is a digit, what is the value of z ? You will find that there are two answers for the last problem. Why is this so?

Answer. If a number is a multiple of 9 , then the sum of its digits will be divisible by 9 .
Sum of digits of $31 \mathrm{z5}=3+1+\mathrm{z}+5=9+\mathrm{z}$
Hence, $9+z$ should be a multiple of 9 .
This is possible when $9+z$ is any one of these numbers $0,9,18,27$, and so on
However, since z is a single digit number, this sum can be either 9 or 18 . Therefore, z should be either 0 or 9.

Page : 260 , Block Name : Exercise 16.2

Q3 If $24 x$ is a multiple of 3 , where x is a digit, what is the value of x ? (Since $24 x$ is a multiple of 3 , its sum of digits $6+x$ is a multiple of 3 ; so $6+x$ is one of these numbers: $0,3,6,9,12,15,18, \ldots$. But since x is a digit, it can only be that $6+x=6$ or 9 or 12 or 15 . Therefore, $x=0$ or 3 or 6 or 9 . Thus, x can have any of four different values.)

Answer. Since $24 x$ is a multiple of 3 , the sum of its digits is a multiple of 3 . Sum of digits of $24 x 2$ $+4+6+x$ Hence, $6+x$ is a multiple of 3 .
This is possible when $6+x$ is any one of these numbers $0,3,6,9$, and so on
Since x is a single digit number, the sum of the digits can be 6 or 9 or 12 or 15 and thus, the value of x comes to O or 3 or 6 or 9 respectively.
Thus, x can have its value as any of the four different values $0,3,6$, or 9 .

Page : 260 , Block Name : Exercise 16.2

Q4 If 31 z 5 is a multiple of 3 , where z is a digit, what might be the values of z

Answer. Since 31 z 5 is a multiple of 3 , the sum of its digits will be a multiple of 3 .
That is, $3+1+z+5=9+z$ is a multiple of 3 .
This is possible when $9+z$ is any one of $0,3,6,9,12,15,18$, and so on
Since z is a single digit number, the value of $9+z$ can only be 9 or 12 or 15 or 18 and thus, the value of x comes to O or 3 or 6 or 9 respectively.
Thus, z can have its value as any one of the four different values $0,3,6$, or 9 .

Page : 260 , Block Name : Exercise 16.2

