NCERT

SOLUTIONS

CLASS - 8TH

aglasem.com

Class: 8th
Subject: Maths
Chapter: 4
Chapter Name : Practical Geometry

Exercise 4.1

Q1 Construct the following quadrilaterals.
(i) Quadrilateral ABCD.
$\mathrm{AB}=4.5 \mathrm{~cm}$
$\mathrm{BC}=5.5 \mathrm{~cm}$
$\mathrm{CD}=4 \mathrm{~cm}$
$\mathrm{AD}=6 \mathrm{~cm}$
$\mathrm{AC}=7 \mathrm{~cm}$
(ii) Quadrilateral JUMP
$\mathrm{JU}=3.5 \mathrm{~cm}$
$\mathrm{UM}=4 \mathrm{~cm}$
$\mathrm{MP}=5 \mathrm{~cm}$
$\mathrm{PJ}=4.5 \mathrm{~cm}$
$\mathrm{PU}=6.5 \mathrm{~cm}$
(iii) Parallelogram MORE
$\mathrm{OR}=6 \mathrm{~cm}$
$\mathrm{RE}=4.5 \mathrm{~cm}$
$\mathrm{EO}=7.5 \mathrm{~cm}$
(iv) Rhombus BEST
$\mathrm{BE}=4.5 \mathrm{~cm}$
$\mathrm{ET}=6 \mathrm{~cm}$
Answer. (i) Firstly, a rough sketch of this quadrilateral can be drawn as follows.

(1) $\triangle \mathrm{ABC}$ can be constructed by using the given measurements as follows.

(2) Vertex D is 6 cm away from vertex A. Therefore, while taking Aas centre, draw an arc of radius 6
cm.

(3) Taking C as centre, draw an arc of radius 4 cm , cutting the previous arc at point D . Join D to A and C.

$A B C D$ is the required quadrilateral.
(ii) Firstly, a rough sketch of this quadrilateral can be drawn as follows.

(1) Δ JUP can be constructed by using the given measurements as follows.

(2) Vertex M is 5 cm away from vertex P and 4 cm away from vertex U. Taking P and U as centres, draw arcs of radii 5 cm and 4 cm respectively. Let the point of intersection be M.

(3) Join M to P and U.

JUMP is the required quadrilateral.
(iii) We know that opposite sides of a parallelogram are equal in length and also these are parallel to each other.
Hence, ME = OR, MO = ER
A rough sketch of this parallelogram can be drawn as follows.

(1) $\triangle \mathrm{EOR}$ can be constructed by using the given measurements as follows.

(2) Vertex M is 4.5 cm away from vertex O and 6 cm away from vertex E. Therefore, while taking O and E as centres, draw arcs of 4.5 cm radius and 6 cm radius respectively. These will intersect each other at point M.

(3) Join M to O and E.

MORE is the required parallelogram.
(iv) We know that all sides of a rhombus are of the same measure.

Hence, $\mathrm{BE}=\mathrm{ES}=\mathrm{ST}=\mathrm{TB}$
A rough sketch of this rhombus can be drawn as follows.

(1) $\Delta \mathrm{BET}$ can be obstructed by using the given measurements as follows.

(2) Vertex S is 4.5 cm away from vertex E and also from vertex T . Therefore, while taking E and T as centres, draw arcs of 4.5 cm radius, which will be intersecting each other at point S.

(3) Join S to E and T.

BEST is the required rhombus.
Page : 60 , Block Name : Exercise 4.1

Exercise 4.2

Q1 Construct the following quadrilaterals.
(i) quadrilateral LIFT
$\mathrm{LI}=4 \mathrm{~cm}$
$\mathrm{IF}=3 \mathrm{~cm}$
$\mathrm{TL}=2.5 \mathrm{~cm}$
$\mathrm{LF}=4.5 \mathrm{~cm}$
IT $=4 \mathrm{~cm}$
(ii) Quadrilateral GOLD
$\mathrm{OL}=7.5 \mathrm{~cm}$
$\mathrm{GL}=6 \mathrm{~cm}$
$\mathrm{GD}=6 \mathrm{~cm}$
$\mathrm{LD}=5 \mathrm{~cm}$
$\mathrm{OD}=10 \mathrm{~cm}$
(iii) Rhombus BEND
$\mathrm{BN}=5.6 \mathrm{~cm}$
$\mathrm{DE}=6.5 \mathrm{~cm}$
Answer. (i) A rough sketch of this quadrilateral can be drawn as follows.

(1) Δ ITL can be constructed by using the given measurements as follows.

(2) Vertex F is 4.5 cm away from vertex L and 3 cm away from vertex I. Therefore, while taking L and I as centres, draw ares of 4.5 cm radius and 3 cm radius respectively, which will be intersecting each other at point F .

(3) Join F to T and F to I.

LIFT is the required quadrilateral.
(ii) A rough sketch of this quadrilateral can be drawn as follows.

(1) Δ GDL can be constructed by using the given measurements as follows.

(2) Vertex O is 10 cm away from vertex D and 7.5 cm away from vertex L . Therefore, while taking D and L as centres, draw arcs of 10 cm radius and 7.5 cm radius respectively. These will intersect each other at point O .

0

(3) Join O to G and L.

GOLD is the required quadrilateral.
(iii) We know that the diagonals of a rhombus always bisect each other at 90°. Let us assume that these are intersecting each other at point O in this rhombus.
Hence, $\mathrm{EO}=\mathrm{OD}=3.25 \mathrm{CM}$
A rough sketch of this rhombus can be drawn as follows.

(1) Draw a line segment BN of 5.6 cm and also draw its perpendicular bisector. Let it intersect the line segment BN at point O .

(2) Taking O as centre, draw arcs of 3.25 cm radius to intersect the perpendicular bisector at point D and E.

(3) Join points D and E to points 3 and N.

BEND is the required quadrilateral.
Page : 62 , Block Name : Exercise 4.2

Exercise 4.3

Q1 Construct the following quadrilaterals.
(i) Quadrilateral MORE
$\mathrm{MO}=6 \mathrm{~cm}$
$\mathrm{OR}=4.5 \mathrm{~cm}$
$\angle \mathrm{M}=60^{\circ}$
$\angle \mathrm{O}=105^{\circ}$
$\angle \mathrm{R}=105^{\circ}$
(ii) Quadrilateral PLAN
$\mathrm{PL}=4 \mathrm{~cm}$
$\mathrm{LA}=6.5 \mathrm{~cm}$
$\angle \mathrm{P}=90^{\circ}$
$\angle \mathrm{A}=110^{\circ}$
$\angle \mathrm{N}=85^{\circ}$
(iii) Parallelogram HEAR
$\mathrm{HE}=5 \mathrm{~cm}$
$\mathrm{EA}=6 \mathrm{~cm}$
$\angle \mathrm{R}=85^{\circ}$
(iv) Rectangle OKAY

OK $=7 \mathrm{~cm}$
$K A=5 \mathrm{~cm}$
Answer. (i) (1) A rough sketch of this quadrilateral can be drawn as follows.

(2) Draw a line segment MO of 6 cm and an angle of 105° at point O . As vertex R is 4.5 cm away from the vertex O, cut a line segment $O R$ of 4.5 cm from this ray.

(3) Again, draw an angle of 105° at point R.

(4) Draw an angle of 60° at point M . Let this ray meet the previously drawn ray from R at point E .

MORE is the required quadrilateral.
(ii) (1) The sum of the angles of a quadrilateral is 360°

In quadrilateral PLAN, $\angle P+\angle L+\angle A+\angle N=360^{\circ}$

$$
\begin{aligned}
& 90^{\circ}+\angle L+110^{\circ}+85^{\circ}=360^{\circ} \\
& 285^{\circ}+\angle L=360^{\circ} \\
& \angle L=360^{\circ}-285^{\circ}=75^{\circ}
\end{aligned}
$$

(2) A rough sketch of this quadrilateral is as follows.

(3) Draw a line segment PL of 4 cm and draw an angle of 75° at point L . As vertex A is 6.5 cm away from vertex L , cut a line segment LA of 6.5 cm from this ray.

(4) Again draw an angle of 110° at point A .

(5) Draw an angle of 90° at point P . This ray will meet the previously drawn ray from A at point N .

PLAN is the required quadrilateral.
(iii) (1) Firstly, a rough sketch of this quadrilateral is as follows.

(2) Draw a line segment HE of 5 cm and an angle of 85° at point E . As vertex A is 6 cm away from vertex E, cut a line segment EA of 6 cm from this ray.

(3) Vertex R is 6 cm and 5 cm away from vertex H and A respectively. By taking radius as 6 cm and 5 cm , draw arcs from point H and A respectively. These will be intersecting each other at point R .

4. Join R to H and A .

HEAR is the required quadrilateral.
(iv) (1) A rough sketch of this quadrilateral is drawn as follows.

(2) Draw a line segment OK of 7 cm and angle of 90° at point K . As vertex A is 5 cm away from vertex K , cut a line segment KA of 5 cm from this ray.

(3) Vertex Y is 5 cm and 7 cm away from vertex O and A respectively. By taking radius as 5 cm and 7 cm , draw arcs from point O and A respectively. These will be intersecting each other at point Y .

(4) Join Y to A and O.

OKAY is the required quadrilateral.
Page : 64 , Block Name : Exercise 4.3

Exercise 4.4

Q1 Construct the following quadrilaterals.
(i) Quadrilateral DEAR

DE $=4 \mathrm{~cm}$
$\mathrm{EA}=5 \mathrm{~cm}$
$\mathrm{AR}=4.5 \mathrm{~cm}$
$\angle \mathrm{E}=60^{\circ}$
$\angle \mathrm{A}=90^{\circ}$
(ii) Quadrilateral TRUE
$\mathrm{TR}=3.5 \mathrm{~cm}$
$\mathrm{RU}=3 \mathrm{~cm}$
$\mathrm{UE}=4 \mathrm{~cm}$
$\angle \mathrm{R}=75^{\circ}$
$\angle \mathrm{U}=120^{\circ}$
Answer. (i) (1) A rough sketch of this quadrilateral can be drawn as follows.

(2) Draw a line segment DE of 4 cm and an angle of 60° at point E . As vertex A is 5 cm away from vertex E , cut a line segment EA of 5 cm from this ray.

(3) Again draw an angle of 90° at point A . As vertex R is 4.5 cm away from vertex A , cut a line segment RA of 4.5 cm from this ray.

(4) Join D to R.

DEAR is the required quadrilateral.
(ii) (1) A rough sketch of this quadrilateral can be drawn as follows.

(2) Draw a line segment $R U$ of 3 cm and angle of 120° at point U . As vertex E is 4 cm away from vertex U , cut line segment UE of 4 cm from this ray.

(3) Next, draw an angle of 75° at point R. As vertex T is 3.5 cm away from vertex R , cut a line segment RT of 3.5 cm from this ray.

(4) Join T to E.

TRUE is the required quadrilateral.

Page : 67, Block Name : Exercise 4.4

Exercise 4.5

Q1 Draw the following.
The square READ with $\mathrm{RE}=5.1 \mathrm{~cm}$.
Answer. All the sides of a square of the same measure and also all the interior angles of a square are of 90° measure. Therefore, the given square READ can be drawn as follows.
(1) A rough sketch of this square READ can be drawn as follows.

(2) Draw a line segment RE of 5.1 cm and an angle of 90° at point R and E .

(3) As vertex A and D are 5.1 cm away from vertex E and R respectively, cut line segments EA and RD, each of 5.1 cm from these rays.

(4) Join D to A.

READ is the required square.
Page : 68 , Block Name : Exercise 4.5
Q2 Draw the following.
A rhombus whose diagonals are 5.2 cm and 6.4 cm long.
Answer. In a rhombus, diagonals bisect each other at 900. Therefore, the given rhombus ABCD can be drawn as follows.
(1) A rough sketch of this rhombus ABCD is as follows.

(2) Draw a line segment AC Of 5.2 cm and draw its perpendicular bisector. Let it intersect the line segment AC at point O.

(3) Draw arcs of $\frac{6.4 \mathrm{~cm}}{2}=3.2 \mathrm{~cm}$ on both sides of this perpendicular bisector. Let the arcs intersect the perpendicular bisector at point B and D.

(4)Join points B and D with points A and C.

ABCD is the required rhombus.

Page : 68, Block Name : Exercise 4.5

Q3 Draw the following.
A rectangle with adjacent sides of lengths 5 cm and 4 cm .
Answer. Opposite sides of a rectangle have their lengths os same measure and also. All the interior
angles of a rectangle are of 90° measure. The given rectangle ABCD may be drawn as follows.
(1) A rough sketch of this rectangle $A B C D$ can be drawn as follows.

(2) Draw a line segment AB of 5 cm and an angle of 90° at point A and B .

(3) As vertex C and D are 4 cm away from vertex B and A respectively, cut the segments AD and BC , each of 4 cm , from thee rays.

$A B C D$ is the required rectangle.
Page : 68 , Block Name : Exercise 4.5
Q4 Draw the following.
A parallelogram OKAY where $\mathrm{OK}=5.5 \mathrm{~cm}$ and $\mathrm{KA}=4.2 \mathrm{~cm}$. Is it unique?
Answer. Opposite sides of a parallelogram are equal and parallel to each other. The given parallelogram OKAY can be drawn as follows.
(1) A rough sketch of this parallelogram OKAY is drawn as follows.

(2) Draw a line segment OK of 5.5 cm and a ray at point K at a convenient angle.

(3) Draw a ray at point O parallel to the ray at K . As the vertices, A and Y , are 4.2 cm away from the vertices K and O respectively, cut the segments KA and OY, each of 4.2 cm , from these rays.

OKAY is the required rectangle.
Page : 68, Block Name : Exercise 4.5

