[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 5470 F Your Roll No......

Paper Code : A645

Name of the Paper : Mathematical Awareness (In Lieu of Qualifying Course)

Name of the Course : B.A. (Hons.) Interdisciplinary Concurrent Course

Duration: 2 Hours Maximum Marks: 50

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt all the questions as per directions question wise.

- 1. Do any **two** parts: (2×4)
 - (a) Answer briefly:
 - (i) What was Ramanujan's most striking discovery?
 - (ii) Who is a sizar?
 - (iii) What work is contained in the book XII of Euclid's Elements?
 - (iv) What did Riemann introduce in the only single short paper he published on Number theory?
 - (b) State whether the following statements are True or false. If false, then give the correct answer:
 - (i) Elliptic functions may be thought of as complex valued functions defined on a Plane.
 - (ii) Riemann's theory was a great advance on Hitler's work.

- (iii) Trignometric functions are real valued functions defined on a Circle, also called Circular functions.
- (iv) Euclid flourished around 300 BCE and taught in Alexandria in England.
- (c) Fill in the blanks:
 - (i) Riemann begins where _____ left off, but follows, the same geometric approach.
 - (ii) In 1846, Riemann matriculated at the _____ in the faculty of Theology.
 - (iii) Riemann's ideas on complex functions were suggested to him by his studies of ______.
 - (iv) In 1849, Riemann returned to Gottingen where he attended the course
- 2. De any three parts:

 (3×5)

- (a) (i) Express GCD (4928,1771) as a linear combination of 4928 and 1771.
 - (ii) State the prime Number Theorem as stated by Gauss.
- (b) (i) Define magic square of nth order. Construct Albrecht Durer's magic square.
 - (ii) Give the Binet's formulas for the Fibonacci and Lucas sequences.
- (c) Find the least integer remainder when (478,932,649,867) is divided by 7. (Use the divisibility rule of 7).
- (d) (i) Find the remainder when: 1! + 2! + 3! + 4! + +100! Is divided by 15. (Use sequences).

(ii) What is the total number of matches in a tennis tournament with 13 contestants?

3. Do any three parts.

 (3×5)

- (a) Explain any two of the following with examples.
 - (i) Perspective and Projection
 - (ii) Types of Fire Altars
 - (iii) Basic Tilings
- (b) (i) State the Four Colour Map Problem.
 - (ii) Make a comparative study between the Möbius Strip and Klein Bottle.
- (c) (i) Find the domain and range of the following functions.
 - (1) $f(x) = x + 1, x \in [0,1]$
 - (2) $f(x) = x^2, x \in [-1,1]$
 - (ii) Write Euler characteristic formula and verify it for tetrahedron and octahedron.
- (d) (i) What are the set of symmetries of an equilateral triangle? Show that it forms a group.
 - (ii) What is a Chromatic number? State the chromatic number of a sphere and torus.
- 4. Do any three parts.

 (3×4)

(a) Under what conditions would you use the median rather than the mean as a measure of central tendency.

(b) A die is tossed so that P(1) = P(2) = P(3) = 1/4

$$P(4) = P(5) = P(6) = 1/12$$

If $E = \{1, 2\}$, $F = \{2, 3\}$, then show that E and F are independent but not mutually exclusive.

- (c) A bag contains 8 white and 4 red balls. Five balls are drawn at random. What is the probability that 2 of them are red and 3 white?
- (d) Use the graphical method to solve the following linear programing problem

$$Min Z = 4x + 6y .$$

Subject to the constraints 2x + y = 6, $x \ge 1$, $y \le 4$, $x, y \ge 0$.